clks.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. Copyright 2018 Massdrop Inc.
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include "arm_atsam_protocol.h"
  15. #include <string.h>
  16. volatile clk_t system_clks;
  17. volatile uint64_t ms_clk;
  18. uint32_t usec_delay_mult;
  19. #define USEC_DELAY_LOOP_CYCLES 3 //Sum of instruction cycles in us delay loop
  20. const uint32_t sercom_apbbase[] = {(uint32_t)SERCOM0,(uint32_t)SERCOM1,(uint32_t)SERCOM2,(uint32_t)SERCOM3,(uint32_t)SERCOM4,(uint32_t)SERCOM5};
  21. const uint8_t sercom_pchan[] = {7, 8, 23, 24, 34, 35};
  22. #define USE_DPLL_IND 0
  23. #define USE_DPLL_DEF GCLK_SOURCE_DPLL0
  24. void CLK_oscctrl_init(void)
  25. {
  26. Oscctrl *posctrl = OSCCTRL;
  27. Gclk *pgclk = GCLK;
  28. DBGC(DC_CLK_OSC_INIT_BEGIN);
  29. //default setup on por
  30. system_clks.freq_dfll = FREQ_DFLL_DEFAULT;
  31. system_clks.freq_gclk[0] = system_clks.freq_dfll;
  32. //configure and startup 16MHz xosc0
  33. posctrl->XOSCCTRL[0].bit.ENABLE = 0;
  34. posctrl->XOSCCTRL[0].bit.STARTUP = 0xD;
  35. posctrl->XOSCCTRL[0].bit.ENALC = 1;
  36. posctrl->XOSCCTRL[0].bit.IMULT = 5;
  37. posctrl->XOSCCTRL[0].bit.IPTAT = 3;
  38. posctrl->XOSCCTRL[0].bit.ONDEMAND = 0;
  39. posctrl->XOSCCTRL[0].bit.XTALEN = 1;
  40. posctrl->XOSCCTRL[0].bit.ENABLE = 1;
  41. while (posctrl->STATUS.bit.XOSCRDY0 == 0) { DBGC(DC_CLK_OSC_INIT_XOSC0_SYNC); }
  42. system_clks.freq_xosc0 = FREQ_XOSC0;
  43. //configure and startup DPLL
  44. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 0;
  45. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) { DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_DISABLE); }
  46. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.REFCLK = 2; //select XOSC0 (16MHz)
  47. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV = 7; //16 MHz / (2 * (7 + 1)) = 1 MHz
  48. posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR = PLL_RATIO; //1 MHz * (PLL_RATIO(47) + 1) = 48MHz
  49. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.DPLLRATIO) { DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_RATIO); }
  50. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ONDEMAND = 0;
  51. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 1;
  52. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) { DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_ENABLE); }
  53. while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.LOCK == 0) { DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_LOCK); }
  54. while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.CLKRDY == 0) { DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_CLKRDY); }
  55. system_clks.freq_dpll[0] = (system_clks.freq_xosc0 / 2 / (posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV + 1)) * (posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR + 1);
  56. //change gclk0 to DPLL
  57. pgclk->GENCTRL[GEN_DPLL0].bit.SRC = USE_DPLL_DEF;
  58. while (pgclk->SYNCBUSY.bit.GENCTRL0) { DBGC(DC_CLK_OSC_INIT_GCLK_SYNC_GENCTRL0); }
  59. system_clks.freq_gclk[0] = system_clks.freq_dpll[0];
  60. usec_delay_mult = system_clks.freq_gclk[0] / (USEC_DELAY_LOOP_CYCLES * 1000000);
  61. if (usec_delay_mult < 1) usec_delay_mult = 1; //Never allow a multiplier of zero
  62. DBGC(DC_CLK_OSC_INIT_COMPLETE);
  63. }
  64. //configure for 1MHz (1 usec timebase)
  65. //call CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
  66. uint32_t CLK_set_gclk_freq(uint8_t gclkn, uint32_t freq)
  67. {
  68. Gclk *pgclk = GCLK;
  69. DBGC(DC_CLK_SET_GCLK_FREQ_BEGIN);
  70. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_1); }
  71. pgclk->GENCTRL[gclkn].bit.SRC = USE_DPLL_DEF;
  72. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_2); }
  73. pgclk->GENCTRL[gclkn].bit.DIV = (uint8_t)(system_clks.freq_dpll[0] / freq);
  74. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_3); }
  75. pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
  76. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_4); }
  77. pgclk->GENCTRL[gclkn].bit.GENEN = 1;
  78. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_5); }
  79. system_clks.freq_gclk[gclkn] = system_clks.freq_dpll[0] / pgclk->GENCTRL[gclkn].bit.DIV;
  80. DBGC(DC_CLK_SET_GCLK_FREQ_COMPLETE);
  81. return system_clks.freq_gclk[gclkn];
  82. }
  83. void CLK_init_osc(void)
  84. {
  85. uint8_t gclkn = GEN_OSC0;
  86. Gclk *pgclk = GCLK;
  87. DBGC(DC_CLK_INIT_OSC_BEGIN);
  88. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_INIT_OSC_SYNC_1); }
  89. pgclk->GENCTRL[gclkn].bit.SRC = GCLK_SOURCE_XOSC0;
  90. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_INIT_OSC_SYNC_2); }
  91. pgclk->GENCTRL[gclkn].bit.DIV = 1;
  92. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_INIT_OSC_SYNC_3); }
  93. pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
  94. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_INIT_OSC_SYNC_4); }
  95. pgclk->GENCTRL[gclkn].bit.GENEN = 1;
  96. while (pgclk->SYNCBUSY.vec.GENCTRL) { DBGC(DC_CLK_INIT_OSC_SYNC_5); }
  97. system_clks.freq_gclk[gclkn] = system_clks.freq_xosc0;
  98. DBGC(DC_CLK_INIT_OSC_COMPLETE);
  99. }
  100. void CLK_reset_time(void)
  101. {
  102. Tc *ptc4 = TC4;
  103. Tc *ptc0 = TC0;
  104. ms_clk = 0;
  105. DBGC(DC_CLK_RESET_TIME_BEGIN);
  106. //stop counters
  107. ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
  108. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {}
  109. ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
  110. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {}
  111. //zero counters
  112. ptc4->COUNT16.COUNT.reg = 0;
  113. while (ptc4->COUNT16.SYNCBUSY.bit.COUNT) {}
  114. ptc0->COUNT32.COUNT.reg = 0;
  115. while (ptc0->COUNT32.SYNCBUSY.bit.COUNT) {}
  116. //start counters
  117. ptc0->COUNT32.CTRLA.bit.ENABLE = 1;
  118. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {}
  119. ptc4->COUNT16.CTRLA.bit.ENABLE = 1;
  120. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {}
  121. DBGC(DC_CLK_RESET_TIME_COMPLETE);
  122. }
  123. void TC4_Handler()
  124. {
  125. if (TC4->COUNT16.INTFLAG.bit.MC0)
  126. {
  127. TC4->COUNT16.INTFLAG.reg = TC_INTENCLR_MC0;
  128. ms_clk++;
  129. }
  130. }
  131. uint32_t CLK_enable_timebase(void)
  132. {
  133. Gclk *pgclk = GCLK;
  134. Mclk *pmclk = MCLK;
  135. Tc *ptc4 = TC4;
  136. Tc *ptc0 = TC0;
  137. Evsys *pevsys = EVSYS;
  138. DBGC(DC_CLK_ENABLE_TIMEBASE_BEGIN);
  139. //gclk2 highspeed time base
  140. CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
  141. CLK_init_osc();
  142. //unmask TC4, sourcegclk2 to TC4
  143. pmclk->APBCMASK.bit.TC4_ = 1;
  144. pgclk->PCHCTRL[TC4_GCLK_ID].bit.GEN = GEN_TC45;
  145. pgclk->PCHCTRL[TC4_GCLK_ID].bit.CHEN = 1;
  146. //configure TC4
  147. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_BEGIN);
  148. ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
  149. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_DISABLE); }
  150. ptc4->COUNT16.CTRLA.bit.SWRST = 1;
  151. while (ptc4->COUNT16.SYNCBUSY.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_1); }
  152. while (ptc4->COUNT16.CTRLA.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_2); }
  153. //CTRLA defaults
  154. //CTRLB as default, counting up
  155. ptc4->COUNT16.CTRLBCLR.reg = 5;
  156. while (ptc4->COUNT16.SYNCBUSY.bit.CTRLB) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CLTRB); }
  157. ptc4->COUNT16.CC[0].reg = 999;
  158. while (ptc4->COUNT16.SYNCBUSY.bit.CC0) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CC0); }
  159. //ptc4->COUNT16.DBGCTRL.bit.DBGRUN = 1;
  160. //wave mode
  161. ptc4->COUNT16.WAVE.bit.WAVEGEN = 1; //MFRQ match frequency mode, toggle each CC match
  162. //generate event for next stage
  163. ptc4->COUNT16.EVCTRL.bit.MCEO0 = 1;
  164. NVIC_EnableIRQ(TC4_IRQn);
  165. ptc4->COUNT16.INTENSET.bit.MC0 = 1;
  166. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_COMPLETE);
  167. //unmask TC0,1, sourcegclk2 to TC0,1
  168. pmclk->APBAMASK.bit.TC0_ = 1;
  169. pgclk->PCHCTRL[TC0_GCLK_ID].bit.GEN = GEN_TC45;
  170. pgclk->PCHCTRL[TC0_GCLK_ID].bit.CHEN = 1;
  171. pmclk->APBAMASK.bit.TC1_ = 1;
  172. pgclk->PCHCTRL[TC1_GCLK_ID].bit.GEN = GEN_TC45;
  173. pgclk->PCHCTRL[TC1_GCLK_ID].bit.CHEN = 1;
  174. //configure TC0
  175. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_BEGIN);
  176. ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
  177. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_DISABLE); }
  178. ptc0->COUNT32.CTRLA.bit.SWRST = 1;
  179. while (ptc0->COUNT32.SYNCBUSY.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_1); }
  180. while (ptc0->COUNT32.CTRLA.bit.SWRST) { DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_2); }
  181. //CTRLA as default
  182. ptc0->COUNT32.CTRLA.bit.MODE = 2; //32 bit mode
  183. ptc0->COUNT32.EVCTRL.bit.TCEI = 1; //enable incoming events
  184. ptc0->COUNT32.EVCTRL.bit.EVACT = 2 ; //count events
  185. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_COMPLETE);
  186. DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_BEGIN);
  187. //configure event system
  188. pmclk->APBBMASK.bit.EVSYS_ = 1;
  189. pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.GEN = GEN_TC45;
  190. pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN = 1;
  191. pevsys->USER[44].reg = EVSYS_ID_USER_PORT_EV_0; //TC0 will get event channel 0
  192. pevsys->Channel[0].CHANNEL.bit.EDGSEL = EVSYS_CHANNEL_EDGSEL_RISING_EDGE_Val; //Rising edge
  193. pevsys->Channel[0].CHANNEL.bit.PATH = EVSYS_CHANNEL_PATH_SYNCHRONOUS_Val; //Synchronous
  194. pevsys->Channel[0].CHANNEL.bit.EVGEN = EVSYS_ID_GEN_TC4_MCX_0; //TC4 MC0
  195. DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_COMPLETE);
  196. CLK_reset_time();
  197. ADC0_clock_init();
  198. DBGC(DC_CLK_ENABLE_TIMEBASE_COMPLETE);
  199. return 0;
  200. }
  201. void CLK_delay_us(uint32_t usec)
  202. {
  203. asm (
  204. "CBZ R0, return\n\t" //If usec == 0, branch to return label
  205. );
  206. asm (
  207. "MULS R0, %0\n\t" //Multiply R0(usec) by usec_delay_mult and store in R0
  208. ".balign 16\n\t" //Ensure loop is aligned for fastest performance
  209. "loop: SUBS R0, #1\n\t" //Subtract 1 from R0 and update flags (1 cycle)
  210. "BNE loop\n\t" //Branch if non-zero to loop label (2 cycles) NOTE: USEC_DELAY_LOOP_CYCLES is the sum of loop cycles
  211. "return:\n\t" //Return label
  212. : //No output registers
  213. : "r" (usec_delay_mult) //For %0
  214. );
  215. //Note: BX LR generated
  216. }
  217. void CLK_delay_ms(uint64_t msec)
  218. {
  219. msec += timer_read64();
  220. while (msec > timer_read64()) {}
  221. }
  222. void clk_enable_sercom_apbmask(int sercomn)
  223. {
  224. Mclk *pmclk = MCLK;
  225. switch (sercomn)
  226. {
  227. case 0:
  228. pmclk->APBAMASK.bit.SERCOM0_ = 1;
  229. break;
  230. case 1:
  231. pmclk->APBAMASK.bit.SERCOM1_ = 1;
  232. break;
  233. case 2:
  234. pmclk->APBBMASK.bit.SERCOM2_ = 1;
  235. break;
  236. case 3:
  237. pmclk->APBBMASK.bit.SERCOM3_ = 1;
  238. break;
  239. default:
  240. break;
  241. }
  242. }
  243. //call CLK_oscctrl_init first
  244. //call CLK_set_spi_freq(CHAN_SERCOM_SPI, FREQ_SPI_DEFAULT);
  245. uint32_t CLK_set_spi_freq(uint8_t sercomn, uint32_t freq)
  246. {
  247. DBGC(DC_CLK_SET_SPI_FREQ_BEGIN);
  248. Gclk *pgclk = GCLK;
  249. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  250. clk_enable_sercom_apbmask(sercomn);
  251. //all gclk0 for now
  252. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  253. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  254. psercom->I2CM.CTRLA.bit.SWRST = 1;
  255. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {}
  256. while (psercom->I2CM.CTRLA.bit.SWRST) {}
  257. psercom->SPI.BAUD.reg = (uint8_t) (system_clks.freq_gclk[0]/2/freq-1);
  258. system_clks.freq_spi = system_clks.freq_gclk[0]/2/(psercom->SPI.BAUD.reg+1);
  259. system_clks.freq_sercom[sercomn] = system_clks.freq_spi;
  260. DBGC(DC_CLK_SET_SPI_FREQ_COMPLETE);
  261. return system_clks.freq_spi;
  262. }
  263. //call CLK_oscctrl_init first
  264. //call CLK_set_i2c0_freq(CHAN_SERCOM_I2C0, FREQ_I2C0_DEFAULT);
  265. uint32_t CLK_set_i2c0_freq(uint8_t sercomn, uint32_t freq)
  266. {
  267. DBGC(DC_CLK_SET_I2C0_FREQ_BEGIN);
  268. Gclk *pgclk = GCLK;
  269. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  270. clk_enable_sercom_apbmask(sercomn);
  271. //all gclk0 for now
  272. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  273. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  274. psercom->I2CM.CTRLA.bit.SWRST = 1;
  275. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {}
  276. while (psercom->I2CM.CTRLA.bit.SWRST) {}
  277. psercom->I2CM.BAUD.bit.BAUD = (uint8_t) (system_clks.freq_gclk[0]/2/freq-1);
  278. system_clks.freq_i2c0 = system_clks.freq_gclk[0]/2/(psercom->I2CM.BAUD.bit.BAUD+1);
  279. system_clks.freq_sercom[sercomn] = system_clks.freq_i2c0;
  280. DBGC(DC_CLK_SET_I2C0_FREQ_COMPLETE);
  281. return system_clks.freq_i2c0;
  282. }
  283. //call CLK_oscctrl_init first
  284. //call CLK_set_i2c1_freq(CHAN_SERCOM_I2C1, FREQ_I2C1_DEFAULT);
  285. uint32_t CLK_set_i2c1_freq(uint8_t sercomn, uint32_t freq)
  286. {
  287. DBGC(DC_CLK_SET_I2C1_FREQ_BEGIN);
  288. Gclk *pgclk = GCLK;
  289. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  290. clk_enable_sercom_apbmask(sercomn);
  291. //all gclk0 for now
  292. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  293. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  294. psercom->I2CM.CTRLA.bit.SWRST = 1;
  295. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {}
  296. while (psercom->I2CM.CTRLA.bit.SWRST) {}
  297. psercom->I2CM.BAUD.bit.BAUD = (uint8_t) (system_clks.freq_gclk[0]/2/freq-10);
  298. system_clks.freq_i2c1 = system_clks.freq_gclk[0]/2/(psercom->I2CM.BAUD.bit.BAUD+10);
  299. system_clks.freq_sercom[sercomn] = system_clks.freq_i2c1;
  300. DBGC(DC_CLK_SET_I2C1_FREQ_COMPLETE);
  301. return system_clks.freq_i2c1;
  302. }
  303. void CLK_init(void)
  304. {
  305. DBGC(DC_CLK_INIT_BEGIN);
  306. memset((void *)&system_clks,0,sizeof(system_clks));
  307. CLK_oscctrl_init();
  308. CLK_enable_timebase();
  309. DBGC(DC_CLK_INIT_COMPLETE);
  310. }