quantum.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #ifdef PROTOCOL_LUFA
  18. #include "outputselect.h"
  19. #endif
  20. #ifndef TAPPING_TERM
  21. #define TAPPING_TERM 200
  22. #endif
  23. #ifndef BREATHING_PERIOD
  24. #define BREATHING_PERIOD 6
  25. #endif
  26. #include "backlight.h"
  27. extern backlight_config_t backlight_config;
  28. #ifdef FAUXCLICKY_ENABLE
  29. #include "fauxclicky.h"
  30. #endif
  31. #ifdef API_ENABLE
  32. #include "api.h"
  33. #endif
  34. #ifdef MIDI_ENABLE
  35. #include "process_midi.h"
  36. #endif
  37. #ifdef AUDIO_ENABLE
  38. #ifndef GOODBYE_SONG
  39. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  40. #endif
  41. #ifndef AG_NORM_SONG
  42. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  43. #endif
  44. #ifndef AG_SWAP_SONG
  45. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  46. #endif
  47. float goodbye_song[][2] = GOODBYE_SONG;
  48. float ag_norm_song[][2] = AG_NORM_SONG;
  49. float ag_swap_song[][2] = AG_SWAP_SONG;
  50. #ifdef DEFAULT_LAYER_SONGS
  51. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  52. #endif
  53. #endif
  54. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  55. switch (code) {
  56. case QK_MODS ... QK_MODS_MAX:
  57. break;
  58. default:
  59. return;
  60. }
  61. if (code & QK_LCTL)
  62. f(KC_LCTL);
  63. if (code & QK_LSFT)
  64. f(KC_LSFT);
  65. if (code & QK_LALT)
  66. f(KC_LALT);
  67. if (code & QK_LGUI)
  68. f(KC_LGUI);
  69. if (code < QK_RMODS_MIN) return;
  70. if (code & QK_RCTL)
  71. f(KC_RCTL);
  72. if (code & QK_RSFT)
  73. f(KC_RSFT);
  74. if (code & QK_RALT)
  75. f(KC_RALT);
  76. if (code & QK_RGUI)
  77. f(KC_RGUI);
  78. }
  79. static inline void qk_register_weak_mods(uint8_t kc) {
  80. add_weak_mods(MOD_BIT(kc));
  81. send_keyboard_report();
  82. }
  83. static inline void qk_unregister_weak_mods(uint8_t kc) {
  84. del_weak_mods(MOD_BIT(kc));
  85. send_keyboard_report();
  86. }
  87. static inline void qk_register_mods(uint8_t kc) {
  88. add_weak_mods(MOD_BIT(kc));
  89. send_keyboard_report();
  90. }
  91. static inline void qk_unregister_mods(uint8_t kc) {
  92. del_weak_mods(MOD_BIT(kc));
  93. send_keyboard_report();
  94. }
  95. void register_code16 (uint16_t code) {
  96. if (IS_MOD(code) || code == KC_NO) {
  97. do_code16 (code, qk_register_mods);
  98. } else {
  99. do_code16 (code, qk_register_weak_mods);
  100. }
  101. register_code (code);
  102. }
  103. void unregister_code16 (uint16_t code) {
  104. unregister_code (code);
  105. if (IS_MOD(code) || code == KC_NO) {
  106. do_code16 (code, qk_unregister_mods);
  107. } else {
  108. do_code16 (code, qk_unregister_weak_mods);
  109. }
  110. }
  111. __attribute__ ((weak))
  112. bool process_action_kb(keyrecord_t *record) {
  113. return true;
  114. }
  115. __attribute__ ((weak))
  116. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  117. return process_record_user(keycode, record);
  118. }
  119. __attribute__ ((weak))
  120. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  121. return true;
  122. }
  123. void reset_keyboard(void) {
  124. clear_keyboard();
  125. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  126. process_midi_all_notes_off();
  127. #endif
  128. #ifdef AUDIO_ENABLE
  129. #ifndef NO_MUSIC_MODE
  130. music_all_notes_off();
  131. #endif
  132. uint16_t timer_start = timer_read();
  133. PLAY_SONG(goodbye_song);
  134. shutdown_user();
  135. while(timer_elapsed(timer_start) < 250)
  136. wait_ms(1);
  137. stop_all_notes();
  138. #else
  139. shutdown_user();
  140. wait_ms(250);
  141. #endif
  142. // this is also done later in bootloader.c - not sure if it's neccesary here
  143. #ifdef BOOTLOADER_CATERINA
  144. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  145. #endif
  146. bootloader_jump();
  147. }
  148. // Shift / paren setup
  149. #ifndef LSPO_KEY
  150. #define LSPO_KEY KC_9
  151. #endif
  152. #ifndef RSPC_KEY
  153. #define RSPC_KEY KC_0
  154. #endif
  155. // Shift / Enter setup
  156. #ifndef SFTENT_KEY
  157. #define SFTENT_KEY KC_ENT
  158. #endif
  159. static bool shift_interrupted[2] = {0, 0};
  160. static uint16_t scs_timer[2] = {0, 0};
  161. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  162. * Used to ensure that the correct keycode is released if the key is released.
  163. */
  164. static bool grave_esc_was_shifted = false;
  165. bool process_record_quantum(keyrecord_t *record) {
  166. /* This gets the keycode from the key pressed */
  167. keypos_t key = record->event.key;
  168. uint16_t keycode;
  169. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  170. /* TODO: Use store_or_get_action() or a similar function. */
  171. if (!disable_action_cache) {
  172. uint8_t layer;
  173. if (record->event.pressed) {
  174. layer = layer_switch_get_layer(key);
  175. update_source_layers_cache(key, layer);
  176. } else {
  177. layer = read_source_layers_cache(key);
  178. }
  179. keycode = keymap_key_to_keycode(layer, key);
  180. } else
  181. #endif
  182. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  183. // This is how you use actions here
  184. // if (keycode == KC_LEAD) {
  185. // action_t action;
  186. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  187. // process_action(record, action);
  188. // return false;
  189. // }
  190. #ifdef TAP_DANCE_ENABLE
  191. preprocess_tap_dance(keycode, record);
  192. #endif
  193. if (!(
  194. #if defined(KEY_LOCK_ENABLE)
  195. // Must run first to be able to mask key_up events.
  196. process_key_lock(&keycode, record) &&
  197. #endif
  198. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  199. process_clicky(keycode, record) &&
  200. #endif //AUDIO_CLICKY
  201. process_record_kb(keycode, record) &&
  202. #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
  203. process_rgb_matrix(keycode, record) &&
  204. #endif
  205. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  206. process_midi(keycode, record) &&
  207. #endif
  208. #ifdef AUDIO_ENABLE
  209. process_audio(keycode, record) &&
  210. #endif
  211. #ifdef STENO_ENABLE
  212. process_steno(keycode, record) &&
  213. #endif
  214. #if ( defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  215. process_music(keycode, record) &&
  216. #endif
  217. #ifdef TAP_DANCE_ENABLE
  218. process_tap_dance(keycode, record) &&
  219. #endif
  220. #ifndef DISABLE_LEADER
  221. process_leader(keycode, record) &&
  222. #endif
  223. #ifndef DISABLE_CHORDING
  224. process_chording(keycode, record) &&
  225. #endif
  226. #ifdef COMBO_ENABLE
  227. process_combo(keycode, record) &&
  228. #endif
  229. #ifdef UNICODE_ENABLE
  230. process_unicode(keycode, record) &&
  231. #endif
  232. #ifdef UCIS_ENABLE
  233. process_ucis(keycode, record) &&
  234. #endif
  235. #ifdef PRINTING_ENABLE
  236. process_printer(keycode, record) &&
  237. #endif
  238. #ifdef AUTO_SHIFT_ENABLE
  239. process_auto_shift(keycode, record) &&
  240. #endif
  241. #ifdef UNICODEMAP_ENABLE
  242. process_unicode_map(keycode, record) &&
  243. #endif
  244. #ifdef TERMINAL_ENABLE
  245. process_terminal(keycode, record) &&
  246. #endif
  247. true)) {
  248. return false;
  249. }
  250. // Shift / paren setup
  251. switch(keycode) {
  252. case RESET:
  253. if (record->event.pressed) {
  254. reset_keyboard();
  255. }
  256. return false;
  257. case DEBUG:
  258. if (record->event.pressed) {
  259. debug_enable = true;
  260. print("DEBUG: enabled.\n");
  261. }
  262. return false;
  263. #ifdef FAUXCLICKY_ENABLE
  264. case FC_TOG:
  265. if (record->event.pressed) {
  266. FAUXCLICKY_TOGGLE;
  267. }
  268. return false;
  269. case FC_ON:
  270. if (record->event.pressed) {
  271. FAUXCLICKY_ON;
  272. }
  273. return false;
  274. case FC_OFF:
  275. if (record->event.pressed) {
  276. FAUXCLICKY_OFF;
  277. }
  278. return false;
  279. #endif
  280. #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  281. case RGB_TOG:
  282. // Split keyboards need to trigger on key-up for edge-case issue
  283. #ifndef SPLIT_KEYBOARD
  284. if (record->event.pressed) {
  285. #else
  286. if (!record->event.pressed) {
  287. #endif
  288. rgblight_toggle();
  289. #ifdef SPLIT_KEYBOARD
  290. RGB_DIRTY = true;
  291. #endif
  292. }
  293. return false;
  294. case RGB_MODE_FORWARD:
  295. if (record->event.pressed) {
  296. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  297. if(shifted) {
  298. rgblight_step_reverse();
  299. }
  300. else {
  301. rgblight_step();
  302. }
  303. #ifdef SPLIT_KEYBOARD
  304. RGB_DIRTY = true;
  305. #endif
  306. }
  307. return false;
  308. case RGB_MODE_REVERSE:
  309. if (record->event.pressed) {
  310. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  311. if(shifted) {
  312. rgblight_step();
  313. }
  314. else {
  315. rgblight_step_reverse();
  316. }
  317. #ifdef SPLIT_KEYBOARD
  318. RGB_DIRTY = true;
  319. #endif
  320. }
  321. return false;
  322. case RGB_HUI:
  323. // Split keyboards need to trigger on key-up for edge-case issue
  324. #ifndef SPLIT_KEYBOARD
  325. if (record->event.pressed) {
  326. #else
  327. if (!record->event.pressed) {
  328. #endif
  329. rgblight_increase_hue();
  330. #ifdef SPLIT_KEYBOARD
  331. RGB_DIRTY = true;
  332. #endif
  333. }
  334. return false;
  335. case RGB_HUD:
  336. // Split keyboards need to trigger on key-up for edge-case issue
  337. #ifndef SPLIT_KEYBOARD
  338. if (record->event.pressed) {
  339. #else
  340. if (!record->event.pressed) {
  341. #endif
  342. rgblight_decrease_hue();
  343. #ifdef SPLIT_KEYBOARD
  344. RGB_DIRTY = true;
  345. #endif
  346. }
  347. return false;
  348. case RGB_SAI:
  349. // Split keyboards need to trigger on key-up for edge-case issue
  350. #ifndef SPLIT_KEYBOARD
  351. if (record->event.pressed) {
  352. #else
  353. if (!record->event.pressed) {
  354. #endif
  355. rgblight_increase_sat();
  356. #ifdef SPLIT_KEYBOARD
  357. RGB_DIRTY = true;
  358. #endif
  359. }
  360. return false;
  361. case RGB_SAD:
  362. // Split keyboards need to trigger on key-up for edge-case issue
  363. #ifndef SPLIT_KEYBOARD
  364. if (record->event.pressed) {
  365. #else
  366. if (!record->event.pressed) {
  367. #endif
  368. rgblight_decrease_sat();
  369. #ifdef SPLIT_KEYBOARD
  370. RGB_DIRTY = true;
  371. #endif
  372. }
  373. return false;
  374. case RGB_VAI:
  375. // Split keyboards need to trigger on key-up for edge-case issue
  376. #ifndef SPLIT_KEYBOARD
  377. if (record->event.pressed) {
  378. #else
  379. if (!record->event.pressed) {
  380. #endif
  381. rgblight_increase_val();
  382. #ifdef SPLIT_KEYBOARD
  383. RGB_DIRTY = true;
  384. #endif
  385. }
  386. return false;
  387. case RGB_VAD:
  388. // Split keyboards need to trigger on key-up for edge-case issue
  389. #ifndef SPLIT_KEYBOARD
  390. if (record->event.pressed) {
  391. #else
  392. if (!record->event.pressed) {
  393. #endif
  394. rgblight_decrease_val();
  395. #ifdef SPLIT_KEYBOARD
  396. RGB_DIRTY = true;
  397. #endif
  398. }
  399. return false;
  400. case RGB_SPI:
  401. if (record->event.pressed) {
  402. rgblight_increase_speed();
  403. }
  404. return false;
  405. case RGB_SPD:
  406. if (record->event.pressed) {
  407. rgblight_decrease_speed();
  408. }
  409. return false;
  410. case RGB_MODE_PLAIN:
  411. if (record->event.pressed) {
  412. rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
  413. #ifdef SPLIT_KEYBOARD
  414. RGB_DIRTY = true;
  415. #endif
  416. }
  417. return false;
  418. case RGB_MODE_BREATHE:
  419. #ifdef RGBLIGHT_EFFECT_BREATHING
  420. if (record->event.pressed) {
  421. if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
  422. (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
  423. rgblight_step();
  424. } else {
  425. rgblight_mode(RGBLIGHT_MODE_BREATHING);
  426. }
  427. }
  428. #endif
  429. return false;
  430. case RGB_MODE_RAINBOW:
  431. #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
  432. if (record->event.pressed) {
  433. if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
  434. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
  435. rgblight_step();
  436. } else {
  437. rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
  438. }
  439. }
  440. #endif
  441. return false;
  442. case RGB_MODE_SWIRL:
  443. #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
  444. if (record->event.pressed) {
  445. if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
  446. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
  447. rgblight_step();
  448. } else {
  449. rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
  450. }
  451. }
  452. #endif
  453. return false;
  454. case RGB_MODE_SNAKE:
  455. #ifdef RGBLIGHT_EFFECT_SNAKE
  456. if (record->event.pressed) {
  457. if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
  458. (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
  459. rgblight_step();
  460. } else {
  461. rgblight_mode(RGBLIGHT_MODE_SNAKE);
  462. }
  463. }
  464. #endif
  465. return false;
  466. case RGB_MODE_KNIGHT:
  467. #ifdef RGBLIGHT_EFFECT_KNIGHT
  468. if (record->event.pressed) {
  469. if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
  470. (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
  471. rgblight_step();
  472. } else {
  473. rgblight_mode(RGBLIGHT_MODE_KNIGHT);
  474. }
  475. }
  476. #endif
  477. return false;
  478. case RGB_MODE_XMAS:
  479. #ifdef RGBLIGHT_EFFECT_CHRISTMAS
  480. if (record->event.pressed) {
  481. rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
  482. }
  483. #endif
  484. return false;
  485. case RGB_MODE_GRADIENT:
  486. #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
  487. if (record->event.pressed) {
  488. if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
  489. (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
  490. rgblight_step();
  491. } else {
  492. rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
  493. }
  494. }
  495. #endif
  496. return false;
  497. case RGB_MODE_RGBTEST:
  498. #ifdef RGBLIGHT_EFFECT_RGB_TEST
  499. if (record->event.pressed) {
  500. rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
  501. }
  502. #endif
  503. return false;
  504. #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  505. #ifdef PROTOCOL_LUFA
  506. case OUT_AUTO:
  507. if (record->event.pressed) {
  508. set_output(OUTPUT_AUTO);
  509. }
  510. return false;
  511. case OUT_USB:
  512. if (record->event.pressed) {
  513. set_output(OUTPUT_USB);
  514. }
  515. return false;
  516. #ifdef BLUETOOTH_ENABLE
  517. case OUT_BT:
  518. if (record->event.pressed) {
  519. set_output(OUTPUT_BLUETOOTH);
  520. }
  521. return false;
  522. #endif
  523. #endif
  524. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  525. if (record->event.pressed) {
  526. // MAGIC actions (BOOTMAGIC without the boot)
  527. if (!eeconfig_is_enabled()) {
  528. eeconfig_init();
  529. }
  530. /* keymap config */
  531. keymap_config.raw = eeconfig_read_keymap();
  532. switch (keycode)
  533. {
  534. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  535. keymap_config.swap_control_capslock = true;
  536. break;
  537. case MAGIC_CAPSLOCK_TO_CONTROL:
  538. keymap_config.capslock_to_control = true;
  539. break;
  540. case MAGIC_SWAP_LALT_LGUI:
  541. keymap_config.swap_lalt_lgui = true;
  542. break;
  543. case MAGIC_SWAP_RALT_RGUI:
  544. keymap_config.swap_ralt_rgui = true;
  545. break;
  546. case MAGIC_NO_GUI:
  547. keymap_config.no_gui = true;
  548. break;
  549. case MAGIC_SWAP_GRAVE_ESC:
  550. keymap_config.swap_grave_esc = true;
  551. break;
  552. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  553. keymap_config.swap_backslash_backspace = true;
  554. break;
  555. case MAGIC_HOST_NKRO:
  556. keymap_config.nkro = true;
  557. break;
  558. case MAGIC_SWAP_ALT_GUI:
  559. keymap_config.swap_lalt_lgui = true;
  560. keymap_config.swap_ralt_rgui = true;
  561. #ifdef AUDIO_ENABLE
  562. PLAY_SONG(ag_swap_song);
  563. #endif
  564. break;
  565. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  566. keymap_config.swap_control_capslock = false;
  567. break;
  568. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  569. keymap_config.capslock_to_control = false;
  570. break;
  571. case MAGIC_UNSWAP_LALT_LGUI:
  572. keymap_config.swap_lalt_lgui = false;
  573. break;
  574. case MAGIC_UNSWAP_RALT_RGUI:
  575. keymap_config.swap_ralt_rgui = false;
  576. break;
  577. case MAGIC_UNNO_GUI:
  578. keymap_config.no_gui = false;
  579. break;
  580. case MAGIC_UNSWAP_GRAVE_ESC:
  581. keymap_config.swap_grave_esc = false;
  582. break;
  583. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  584. keymap_config.swap_backslash_backspace = false;
  585. break;
  586. case MAGIC_UNHOST_NKRO:
  587. keymap_config.nkro = false;
  588. break;
  589. case MAGIC_UNSWAP_ALT_GUI:
  590. keymap_config.swap_lalt_lgui = false;
  591. keymap_config.swap_ralt_rgui = false;
  592. #ifdef AUDIO_ENABLE
  593. PLAY_SONG(ag_norm_song);
  594. #endif
  595. break;
  596. case MAGIC_TOGGLE_NKRO:
  597. keymap_config.nkro = !keymap_config.nkro;
  598. break;
  599. default:
  600. break;
  601. }
  602. eeconfig_update_keymap(keymap_config.raw);
  603. clear_keyboard(); // clear to prevent stuck keys
  604. return false;
  605. }
  606. break;
  607. case KC_LSPO: {
  608. if (record->event.pressed) {
  609. shift_interrupted[0] = false;
  610. scs_timer[0] = timer_read ();
  611. register_mods(MOD_BIT(KC_LSFT));
  612. }
  613. else {
  614. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  615. if (get_mods() & MOD_BIT(KC_RSFT)) {
  616. shift_interrupted[0] = true;
  617. shift_interrupted[1] = true;
  618. }
  619. #endif
  620. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  621. register_code(LSPO_KEY);
  622. unregister_code(LSPO_KEY);
  623. }
  624. unregister_mods(MOD_BIT(KC_LSFT));
  625. }
  626. return false;
  627. }
  628. case KC_RSPC: {
  629. if (record->event.pressed) {
  630. shift_interrupted[1] = false;
  631. scs_timer[1] = timer_read ();
  632. register_mods(MOD_BIT(KC_RSFT));
  633. }
  634. else {
  635. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  636. if (get_mods() & MOD_BIT(KC_LSFT)) {
  637. shift_interrupted[0] = true;
  638. shift_interrupted[1] = true;
  639. }
  640. #endif
  641. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  642. register_code(RSPC_KEY);
  643. unregister_code(RSPC_KEY);
  644. }
  645. unregister_mods(MOD_BIT(KC_RSFT));
  646. }
  647. return false;
  648. }
  649. case KC_SFTENT: {
  650. if (record->event.pressed) {
  651. shift_interrupted[1] = false;
  652. scs_timer[1] = timer_read ();
  653. register_mods(MOD_BIT(KC_RSFT));
  654. }
  655. else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  656. unregister_mods(MOD_BIT(KC_RSFT));
  657. register_code(SFTENT_KEY);
  658. unregister_code(SFTENT_KEY);
  659. }
  660. else {
  661. unregister_mods(MOD_BIT(KC_RSFT));
  662. }
  663. return false;
  664. }
  665. case GRAVE_ESC: {
  666. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  667. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  668. #ifdef GRAVE_ESC_ALT_OVERRIDE
  669. // if ALT is pressed, ESC is always sent
  670. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  671. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  672. shifted = 0;
  673. }
  674. #endif
  675. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  676. // if CTRL is pressed, ESC is always sent
  677. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  678. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  679. shifted = 0;
  680. }
  681. #endif
  682. #ifdef GRAVE_ESC_GUI_OVERRIDE
  683. // if GUI is pressed, ESC is always sent
  684. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  685. shifted = 0;
  686. }
  687. #endif
  688. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  689. // if SHIFT is pressed, ESC is always sent
  690. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  691. shifted = 0;
  692. }
  693. #endif
  694. if (record->event.pressed) {
  695. grave_esc_was_shifted = shifted;
  696. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  697. }
  698. else {
  699. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  700. }
  701. send_keyboard_report();
  702. return false;
  703. }
  704. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  705. case BL_BRTG: {
  706. if (record->event.pressed)
  707. breathing_toggle();
  708. return false;
  709. }
  710. #endif
  711. default: {
  712. shift_interrupted[0] = true;
  713. shift_interrupted[1] = true;
  714. break;
  715. }
  716. }
  717. return process_action_kb(record);
  718. }
  719. __attribute__ ((weak))
  720. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  721. 0, 0, 0, 0, 0, 0, 0, 0,
  722. 0, 0, 0, 0, 0, 0, 0, 0,
  723. 0, 0, 0, 0, 0, 0, 0, 0,
  724. 0, 0, 0, 0, 0, 0, 0, 0,
  725. 0, 1, 1, 1, 1, 1, 1, 0,
  726. 1, 1, 1, 1, 0, 0, 0, 0,
  727. 0, 0, 0, 0, 0, 0, 0, 0,
  728. 0, 0, 1, 0, 1, 0, 1, 1,
  729. 1, 1, 1, 1, 1, 1, 1, 1,
  730. 1, 1, 1, 1, 1, 1, 1, 1,
  731. 1, 1, 1, 1, 1, 1, 1, 1,
  732. 1, 1, 1, 0, 0, 0, 1, 1,
  733. 0, 0, 0, 0, 0, 0, 0, 0,
  734. 0, 0, 0, 0, 0, 0, 0, 0,
  735. 0, 0, 0, 0, 0, 0, 0, 0,
  736. 0, 0, 0, 1, 1, 1, 1, 0
  737. };
  738. __attribute__ ((weak))
  739. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  740. 0, 0, 0, 0, 0, 0, 0, 0,
  741. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  742. 0, 0, 0, 0, 0, 0, 0, 0,
  743. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  744. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  745. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  746. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  747. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  748. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  749. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  750. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  751. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  752. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  753. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  754. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  755. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  756. };
  757. void send_string(const char *str) {
  758. send_string_with_delay(str, 0);
  759. }
  760. void send_string_P(const char *str) {
  761. send_string_with_delay_P(str, 0);
  762. }
  763. void send_string_with_delay(const char *str, uint8_t interval) {
  764. while (1) {
  765. char ascii_code = *str;
  766. if (!ascii_code) break;
  767. if (ascii_code == 1) {
  768. // tap
  769. uint8_t keycode = *(++str);
  770. register_code(keycode);
  771. unregister_code(keycode);
  772. } else if (ascii_code == 2) {
  773. // down
  774. uint8_t keycode = *(++str);
  775. register_code(keycode);
  776. } else if (ascii_code == 3) {
  777. // up
  778. uint8_t keycode = *(++str);
  779. unregister_code(keycode);
  780. } else {
  781. send_char(ascii_code);
  782. }
  783. ++str;
  784. // interval
  785. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  786. }
  787. }
  788. void send_string_with_delay_P(const char *str, uint8_t interval) {
  789. while (1) {
  790. char ascii_code = pgm_read_byte(str);
  791. if (!ascii_code) break;
  792. if (ascii_code == 1) {
  793. // tap
  794. uint8_t keycode = pgm_read_byte(++str);
  795. register_code(keycode);
  796. unregister_code(keycode);
  797. } else if (ascii_code == 2) {
  798. // down
  799. uint8_t keycode = pgm_read_byte(++str);
  800. register_code(keycode);
  801. } else if (ascii_code == 3) {
  802. // up
  803. uint8_t keycode = pgm_read_byte(++str);
  804. unregister_code(keycode);
  805. } else {
  806. send_char(ascii_code);
  807. }
  808. ++str;
  809. // interval
  810. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  811. }
  812. }
  813. void send_char(char ascii_code) {
  814. uint8_t keycode;
  815. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  816. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  817. register_code(KC_LSFT);
  818. register_code(keycode);
  819. unregister_code(keycode);
  820. unregister_code(KC_LSFT);
  821. } else {
  822. register_code(keycode);
  823. unregister_code(keycode);
  824. }
  825. }
  826. void set_single_persistent_default_layer(uint8_t default_layer) {
  827. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  828. PLAY_SONG(default_layer_songs[default_layer]);
  829. #endif
  830. eeconfig_update_default_layer(1U<<default_layer);
  831. default_layer_set(1U<<default_layer);
  832. }
  833. uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  834. uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  835. uint32_t mask3 = 1UL << layer3;
  836. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  837. }
  838. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  839. layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
  840. }
  841. void tap_random_base64(void) {
  842. #if defined(__AVR_ATmega32U4__)
  843. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  844. #else
  845. uint8_t key = rand() % 64;
  846. #endif
  847. switch (key) {
  848. case 0 ... 25:
  849. register_code(KC_LSFT);
  850. register_code(key + KC_A);
  851. unregister_code(key + KC_A);
  852. unregister_code(KC_LSFT);
  853. break;
  854. case 26 ... 51:
  855. register_code(key - 26 + KC_A);
  856. unregister_code(key - 26 + KC_A);
  857. break;
  858. case 52:
  859. register_code(KC_0);
  860. unregister_code(KC_0);
  861. break;
  862. case 53 ... 61:
  863. register_code(key - 53 + KC_1);
  864. unregister_code(key - 53 + KC_1);
  865. break;
  866. case 62:
  867. register_code(KC_LSFT);
  868. register_code(KC_EQL);
  869. unregister_code(KC_EQL);
  870. unregister_code(KC_LSFT);
  871. break;
  872. case 63:
  873. register_code(KC_SLSH);
  874. unregister_code(KC_SLSH);
  875. break;
  876. }
  877. }
  878. void matrix_init_quantum() {
  879. #ifdef BACKLIGHT_ENABLE
  880. backlight_init_ports();
  881. #endif
  882. #ifdef AUDIO_ENABLE
  883. audio_init();
  884. #endif
  885. #ifdef RGB_MATRIX_ENABLE
  886. rgb_matrix_init();
  887. #endif
  888. matrix_init_kb();
  889. }
  890. uint8_t rgb_matrix_task_counter = 0;
  891. #ifndef RGB_MATRIX_SKIP_FRAMES
  892. #define RGB_MATRIX_SKIP_FRAMES 1
  893. #endif
  894. void matrix_scan_quantum() {
  895. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  896. matrix_scan_music();
  897. #endif
  898. #ifdef TAP_DANCE_ENABLE
  899. matrix_scan_tap_dance();
  900. #endif
  901. #ifdef COMBO_ENABLE
  902. matrix_scan_combo();
  903. #endif
  904. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  905. backlight_task();
  906. #endif
  907. #ifdef RGB_MATRIX_ENABLE
  908. rgb_matrix_task();
  909. if (rgb_matrix_task_counter == 0) {
  910. rgb_matrix_update_pwm_buffers();
  911. }
  912. rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
  913. #endif
  914. matrix_scan_kb();
  915. }
  916. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  917. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  918. // depending on the pin, we use a different output compare unit
  919. #if BACKLIGHT_PIN == B7
  920. # define TCCRxA TCCR1A
  921. # define TCCRxB TCCR1B
  922. # define COMxx1 COM1C1
  923. # define OCRxx OCR1C
  924. # define ICRx ICR1
  925. #elif BACKLIGHT_PIN == B6
  926. # define TCCRxA TCCR1A
  927. # define TCCRxB TCCR1B
  928. # define COMxx1 COM1B1
  929. # define OCRxx OCR1B
  930. # define ICRx ICR1
  931. #elif BACKLIGHT_PIN == B5
  932. # define TCCRxA TCCR1A
  933. # define TCCRxB TCCR1B
  934. # define COMxx1 COM1A1
  935. # define OCRxx OCR1A
  936. # define ICRx ICR1
  937. #elif BACKLIGHT_PIN == C6
  938. # define TCCRxA TCCR3A
  939. # define TCCRxB TCCR3B
  940. # define COMxx1 COM1A1
  941. # define OCRxx OCR3A
  942. # define ICRx ICR3
  943. #else
  944. # define NO_HARDWARE_PWM
  945. #endif
  946. #ifndef BACKLIGHT_ON_STATE
  947. #define BACKLIGHT_ON_STATE 0
  948. #endif
  949. #ifdef NO_HARDWARE_PWM // pwm through software
  950. __attribute__ ((weak))
  951. void backlight_init_ports(void)
  952. {
  953. // Setup backlight pin as output and output to on state.
  954. // DDRx |= n
  955. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  956. #if BACKLIGHT_ON_STATE == 0
  957. // PORTx &= ~n
  958. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  959. #else
  960. // PORTx |= n
  961. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  962. #endif
  963. }
  964. __attribute__ ((weak))
  965. void backlight_set(uint8_t level) {}
  966. uint8_t backlight_tick = 0;
  967. #ifndef BACKLIGHT_CUSTOM_DRIVER
  968. void backlight_task(void) {
  969. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  970. #if BACKLIGHT_ON_STATE == 0
  971. // PORTx &= ~n
  972. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  973. #else
  974. // PORTx |= n
  975. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  976. #endif
  977. } else {
  978. #if BACKLIGHT_ON_STATE == 0
  979. // PORTx |= n
  980. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  981. #else
  982. // PORTx &= ~n
  983. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  984. #endif
  985. }
  986. backlight_tick = (backlight_tick + 1) % 16;
  987. }
  988. #endif
  989. #ifdef BACKLIGHT_BREATHING
  990. #ifndef BACKLIGHT_CUSTOM_DRIVER
  991. #error "Backlight breathing only available with hardware PWM. Please disable."
  992. #endif
  993. #endif
  994. #else // pwm through timer
  995. #define TIMER_TOP 0xFFFFU
  996. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  997. static uint16_t cie_lightness(uint16_t v) {
  998. if (v <= 5243) // if below 8% of max
  999. return v / 9; // same as dividing by 900%
  1000. else {
  1001. uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  1002. // to get a useful result with integer division, we shift left in the expression above
  1003. // and revert what we've done again after squaring.
  1004. y = y * y * y >> 8;
  1005. if (y > 0xFFFFUL) // prevent overflow
  1006. return 0xFFFFU;
  1007. else
  1008. return (uint16_t) y;
  1009. }
  1010. }
  1011. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  1012. static inline void set_pwm(uint16_t val) {
  1013. OCRxx = val;
  1014. }
  1015. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1016. __attribute__ ((weak))
  1017. void backlight_set(uint8_t level) {
  1018. if (level > BACKLIGHT_LEVELS)
  1019. level = BACKLIGHT_LEVELS;
  1020. if (level == 0) {
  1021. // Turn off PWM control on backlight pin
  1022. TCCRxA &= ~(_BV(COMxx1));
  1023. } else {
  1024. // Turn on PWM control of backlight pin
  1025. TCCRxA |= _BV(COMxx1);
  1026. }
  1027. // Set the brightness
  1028. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  1029. }
  1030. void backlight_task(void) {}
  1031. #endif // BACKLIGHT_CUSTOM_DRIVER
  1032. #ifdef BACKLIGHT_BREATHING
  1033. #define BREATHING_NO_HALT 0
  1034. #define BREATHING_HALT_OFF 1
  1035. #define BREATHING_HALT_ON 2
  1036. #define BREATHING_STEPS 128
  1037. static uint8_t breathing_period = BREATHING_PERIOD;
  1038. static uint8_t breathing_halt = BREATHING_NO_HALT;
  1039. static uint16_t breathing_counter = 0;
  1040. bool is_breathing(void) {
  1041. return !!(TIMSK1 & _BV(TOIE1));
  1042. }
  1043. #define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
  1044. #define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
  1045. #define breathing_min() do {breathing_counter = 0;} while (0)
  1046. #define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
  1047. void breathing_enable(void)
  1048. {
  1049. breathing_counter = 0;
  1050. breathing_halt = BREATHING_NO_HALT;
  1051. breathing_interrupt_enable();
  1052. }
  1053. void breathing_pulse(void)
  1054. {
  1055. if (get_backlight_level() == 0)
  1056. breathing_min();
  1057. else
  1058. breathing_max();
  1059. breathing_halt = BREATHING_HALT_ON;
  1060. breathing_interrupt_enable();
  1061. }
  1062. void breathing_disable(void)
  1063. {
  1064. breathing_interrupt_disable();
  1065. // Restore backlight level
  1066. backlight_set(get_backlight_level());
  1067. }
  1068. void breathing_self_disable(void)
  1069. {
  1070. if (get_backlight_level() == 0)
  1071. breathing_halt = BREATHING_HALT_OFF;
  1072. else
  1073. breathing_halt = BREATHING_HALT_ON;
  1074. }
  1075. void breathing_toggle(void) {
  1076. if (is_breathing())
  1077. breathing_disable();
  1078. else
  1079. breathing_enable();
  1080. }
  1081. void breathing_period_set(uint8_t value)
  1082. {
  1083. if (!value)
  1084. value = 1;
  1085. breathing_period = value;
  1086. }
  1087. void breathing_period_default(void) {
  1088. breathing_period_set(BREATHING_PERIOD);
  1089. }
  1090. void breathing_period_inc(void)
  1091. {
  1092. breathing_period_set(breathing_period+1);
  1093. }
  1094. void breathing_period_dec(void)
  1095. {
  1096. breathing_period_set(breathing_period-1);
  1097. }
  1098. /* To generate breathing curve in python:
  1099. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  1100. */
  1101. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1102. // Use this before the cie_lightness function.
  1103. static inline uint16_t scale_backlight(uint16_t v) {
  1104. return v / BACKLIGHT_LEVELS * get_backlight_level();
  1105. }
  1106. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  1107. * about 244 times per second.
  1108. */
  1109. ISR(TIMER1_OVF_vect)
  1110. {
  1111. uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  1112. // resetting after one period to prevent ugly reset at overflow.
  1113. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  1114. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  1115. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
  1116. ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  1117. {
  1118. breathing_interrupt_disable();
  1119. }
  1120. set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  1121. }
  1122. #endif // BACKLIGHT_BREATHING
  1123. __attribute__ ((weak))
  1124. void backlight_init_ports(void)
  1125. {
  1126. // Setup backlight pin as output and output to on state.
  1127. // DDRx |= n
  1128. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  1129. #if BACKLIGHT_ON_STATE == 0
  1130. // PORTx &= ~n
  1131. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1132. #else
  1133. // PORTx |= n
  1134. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1135. #endif
  1136. // I could write a wall of text here to explain... but TL;DW
  1137. // Go read the ATmega32u4 datasheet.
  1138. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1139. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1140. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1141. // (i.e. start high, go low when counter matches.)
  1142. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1143. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1144. /*
  1145. 14.8.3:
  1146. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1147. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1148. */
  1149. TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
  1150. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1151. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1152. ICRx = TIMER_TOP;
  1153. backlight_init();
  1154. #ifdef BACKLIGHT_BREATHING
  1155. breathing_enable();
  1156. #endif
  1157. }
  1158. #endif // NO_HARDWARE_PWM
  1159. #else // backlight
  1160. __attribute__ ((weak))
  1161. void backlight_init_ports(void) {}
  1162. __attribute__ ((weak))
  1163. void backlight_set(uint8_t level) {}
  1164. #endif // backlight
  1165. #ifdef HD44780_ENABLED
  1166. #include "hd44780.h"
  1167. #endif
  1168. // Functions for spitting out values
  1169. //
  1170. void send_dword(uint32_t number) { // this might not actually work
  1171. uint16_t word = (number >> 16);
  1172. send_word(word);
  1173. send_word(number & 0xFFFFUL);
  1174. }
  1175. void send_word(uint16_t number) {
  1176. uint8_t byte = number >> 8;
  1177. send_byte(byte);
  1178. send_byte(number & 0xFF);
  1179. }
  1180. void send_byte(uint8_t number) {
  1181. uint8_t nibble = number >> 4;
  1182. send_nibble(nibble);
  1183. send_nibble(number & 0xF);
  1184. }
  1185. void send_nibble(uint8_t number) {
  1186. switch (number) {
  1187. case 0:
  1188. register_code(KC_0);
  1189. unregister_code(KC_0);
  1190. break;
  1191. case 1 ... 9:
  1192. register_code(KC_1 + (number - 1));
  1193. unregister_code(KC_1 + (number - 1));
  1194. break;
  1195. case 0xA ... 0xF:
  1196. register_code(KC_A + (number - 0xA));
  1197. unregister_code(KC_A + (number - 0xA));
  1198. break;
  1199. }
  1200. }
  1201. __attribute__((weak))
  1202. uint16_t hex_to_keycode(uint8_t hex)
  1203. {
  1204. hex = hex & 0xF;
  1205. if (hex == 0x0) {
  1206. return KC_0;
  1207. } else if (hex < 0xA) {
  1208. return KC_1 + (hex - 0x1);
  1209. } else {
  1210. return KC_A + (hex - 0xA);
  1211. }
  1212. }
  1213. void api_send_unicode(uint32_t unicode) {
  1214. #ifdef API_ENABLE
  1215. uint8_t chunk[4];
  1216. dword_to_bytes(unicode, chunk);
  1217. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1218. #endif
  1219. }
  1220. __attribute__ ((weak))
  1221. void led_set_user(uint8_t usb_led) {
  1222. }
  1223. __attribute__ ((weak))
  1224. void led_set_kb(uint8_t usb_led) {
  1225. led_set_user(usb_led);
  1226. }
  1227. __attribute__ ((weak))
  1228. void led_init_ports(void)
  1229. {
  1230. }
  1231. __attribute__ ((weak))
  1232. void led_set(uint8_t usb_led)
  1233. {
  1234. // Example LED Code
  1235. //
  1236. // // Using PE6 Caps Lock LED
  1237. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1238. // {
  1239. // // Output high.
  1240. // DDRE |= (1<<6);
  1241. // PORTE |= (1<<6);
  1242. // }
  1243. // else
  1244. // {
  1245. // // Output low.
  1246. // DDRE &= ~(1<<6);
  1247. // PORTE &= ~(1<<6);
  1248. // }
  1249. led_set_kb(usb_led);
  1250. }
  1251. //------------------------------------------------------------------------------
  1252. // Override these functions in your keymap file to play different tunes on
  1253. // different events such as startup and bootloader jump
  1254. __attribute__ ((weak))
  1255. void startup_user() {}
  1256. __attribute__ ((weak))
  1257. void shutdown_user() {}
  1258. //------------------------------------------------------------------------------