matrix.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <avr/io.h>
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "split_util.h"
  26. #include "pro_micro.h"
  27. #include "config.h"
  28. #include "timer.h"
  29. #ifdef USE_I2C
  30. # include "i2c.h"
  31. #else // USE_SERIAL
  32. # include "serial.h"
  33. #endif
  34. #ifndef DEBOUNCING_DELAY
  35. # define DEBOUNCING_DELAY 5
  36. #endif
  37. #if (DEBOUNCING_DELAY > 0)
  38. static uint16_t debouncing_time;
  39. static bool debouncing = false;
  40. #endif
  41. #if (MATRIX_COLS <= 8)
  42. # define print_matrix_header() print("\nr/c 01234567\n")
  43. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  44. # define matrix_bitpop(i) bitpop(matrix[i])
  45. # define ROW_SHIFTER ((uint8_t)1)
  46. #else
  47. # error "Currently only supports 8 COLS"
  48. #endif
  49. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  50. #define ERROR_DISCONNECT_COUNT 5
  51. #define ROWS_PER_HAND (MATRIX_ROWS/2)
  52. static uint8_t error_count = 0;
  53. static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  54. static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  55. /* matrix state(1:on, 0:off) */
  56. static matrix_row_t matrix[MATRIX_ROWS];
  57. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  58. #if (DIODE_DIRECTION == COL2ROW)
  59. static void init_cols(void);
  60. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  61. static void unselect_rows(void);
  62. static void select_row(uint8_t row);
  63. static void unselect_row(uint8_t row);
  64. #elif (DIODE_DIRECTION == ROW2COL)
  65. static void init_rows(void);
  66. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  67. static void unselect_cols(void);
  68. static void unselect_col(uint8_t col);
  69. static void select_col(uint8_t col);
  70. #endif
  71. __attribute__ ((weak))
  72. void matrix_init_kb(void) {
  73. matrix_init_user();
  74. }
  75. __attribute__ ((weak))
  76. void matrix_scan_kb(void) {
  77. matrix_scan_user();
  78. }
  79. __attribute__ ((weak))
  80. void matrix_init_user(void) {
  81. }
  82. __attribute__ ((weak))
  83. void matrix_scan_user(void) {
  84. }
  85. inline
  86. uint8_t matrix_rows(void)
  87. {
  88. return MATRIX_ROWS;
  89. }
  90. inline
  91. uint8_t matrix_cols(void)
  92. {
  93. return MATRIX_COLS;
  94. }
  95. void matrix_init(void)
  96. {
  97. #ifdef DISABLE_JTAG
  98. // JTAG disable for PORT F. write JTD bit twice within four cycles.
  99. MCUCR |= (1<<JTD);
  100. MCUCR |= (1<<JTD);
  101. #endif
  102. debug_enable = true;
  103. debug_matrix = true;
  104. debug_mouse = true;
  105. // initialize row and col
  106. #if (DIODE_DIRECTION == COL2ROW)
  107. unselect_rows();
  108. init_cols();
  109. #elif (DIODE_DIRECTION == ROW2COL)
  110. unselect_cols();
  111. init_rows();
  112. #endif
  113. TX_RX_LED_INIT;
  114. // initialize matrix state: all keys off
  115. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  116. matrix[i] = 0;
  117. matrix_debouncing[i] = 0;
  118. }
  119. matrix_init_quantum();
  120. }
  121. uint8_t _matrix_scan(void)
  122. {
  123. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  124. #if (DIODE_DIRECTION == COL2ROW)
  125. // Set row, read cols
  126. for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
  127. # if (DEBOUNCING_DELAY > 0)
  128. bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
  129. if (matrix_changed) {
  130. debouncing = true;
  131. debouncing_time = timer_read();
  132. }
  133. # else
  134. read_cols_on_row(matrix+offset, current_row);
  135. # endif
  136. }
  137. #elif (DIODE_DIRECTION == ROW2COL)
  138. // Set col, read rows
  139. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  140. # if (DEBOUNCING_DELAY > 0)
  141. bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
  142. if (matrix_changed) {
  143. debouncing = true;
  144. debouncing_time = timer_read();
  145. }
  146. # else
  147. read_rows_on_col(matrix+offset, current_col);
  148. # endif
  149. }
  150. #endif
  151. # if (DEBOUNCING_DELAY > 0)
  152. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
  153. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  154. matrix[i+offset] = matrix_debouncing[i+offset];
  155. }
  156. debouncing = false;
  157. }
  158. # endif
  159. return 1;
  160. }
  161. #ifdef USE_I2C
  162. // Get rows from other half over i2c
  163. int i2c_transaction(void) {
  164. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  165. int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  166. if (err) goto i2c_error;
  167. // start of matrix stored at 0x00
  168. err = i2c_master_write(0x00);
  169. if (err) goto i2c_error;
  170. // Start read
  171. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  172. if (err) goto i2c_error;
  173. if (!err) {
  174. int i;
  175. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  176. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  177. }
  178. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  179. i2c_master_stop();
  180. } else {
  181. i2c_error: // the cable is disconnceted, or something else went wrong
  182. i2c_reset_state();
  183. return err;
  184. }
  185. return 0;
  186. }
  187. #else // USE_SERIAL
  188. int serial_transaction(void) {
  189. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  190. if (serial_update_buffers()) {
  191. return 1;
  192. }
  193. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  194. matrix[slaveOffset+i] = serial_slave_buffer[i];
  195. }
  196. return 0;
  197. }
  198. #endif
  199. uint8_t matrix_scan(void)
  200. {
  201. uint8_t ret = _matrix_scan();
  202. #ifdef USE_I2C
  203. if( i2c_transaction() ) {
  204. #else // USE_SERIAL
  205. if( serial_transaction() ) {
  206. #endif
  207. // turn on the indicator led when halves are disconnected
  208. TXLED1;
  209. error_count++;
  210. if (error_count > ERROR_DISCONNECT_COUNT) {
  211. // reset other half if disconnected
  212. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  213. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  214. matrix[slaveOffset+i] = 0;
  215. }
  216. }
  217. } else {
  218. // turn off the indicator led on no error
  219. TXLED0;
  220. error_count = 0;
  221. }
  222. matrix_scan_quantum();
  223. return ret;
  224. }
  225. void matrix_slave_scan(void) {
  226. _matrix_scan();
  227. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  228. #ifdef USE_I2C
  229. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  230. i2c_slave_buffer[i] = matrix[offset+i];
  231. }
  232. #else // USE_SERIAL
  233. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  234. serial_slave_buffer[i] = matrix[offset+i];
  235. }
  236. #endif
  237. }
  238. bool matrix_is_modified(void)
  239. {
  240. if (debouncing) return false;
  241. return true;
  242. }
  243. inline
  244. bool matrix_is_on(uint8_t row, uint8_t col)
  245. {
  246. return (matrix[row] & ((matrix_row_t)1<<col));
  247. }
  248. inline
  249. matrix_row_t matrix_get_row(uint8_t row)
  250. {
  251. return matrix[row];
  252. }
  253. void matrix_print(void)
  254. {
  255. print("\nr/c 0123456789ABCDEF\n");
  256. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  257. phex(row); print(": ");
  258. pbin_reverse16(matrix_get_row(row));
  259. print("\n");
  260. }
  261. }
  262. uint8_t matrix_key_count(void)
  263. {
  264. uint8_t count = 0;
  265. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  266. count += bitpop16(matrix[i]);
  267. }
  268. return count;
  269. }
  270. #if (DIODE_DIRECTION == COL2ROW)
  271. static void init_cols(void)
  272. {
  273. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  274. uint8_t pin = col_pins[x];
  275. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  276. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  277. }
  278. }
  279. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
  280. {
  281. // Store last value of row prior to reading
  282. matrix_row_t last_row_value = current_matrix[current_row];
  283. // Clear data in matrix row
  284. current_matrix[current_row] = 0;
  285. // Select row and wait for row selecton to stabilize
  286. select_row(current_row);
  287. wait_us(30);
  288. // For each col...
  289. for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  290. // Select the col pin to read (active low)
  291. uint8_t pin = col_pins[col_index];
  292. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  293. // Populate the matrix row with the state of the col pin
  294. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  295. }
  296. // Unselect row
  297. unselect_row(current_row);
  298. return (last_row_value != current_matrix[current_row]);
  299. }
  300. static void select_row(uint8_t row)
  301. {
  302. uint8_t pin = row_pins[row];
  303. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  304. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  305. }
  306. static void unselect_row(uint8_t row)
  307. {
  308. uint8_t pin = row_pins[row];
  309. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  310. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  311. }
  312. static void unselect_rows(void)
  313. {
  314. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  315. uint8_t pin = row_pins[x];
  316. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  317. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  318. }
  319. }
  320. #elif (DIODE_DIRECTION == ROW2COL)
  321. static void init_rows(void)
  322. {
  323. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  324. uint8_t pin = row_pins[x];
  325. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  326. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  327. }
  328. }
  329. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  330. {
  331. bool matrix_changed = false;
  332. // Select col and wait for col selecton to stabilize
  333. select_col(current_col);
  334. wait_us(30);
  335. // For each row...
  336. for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
  337. {
  338. // Store last value of row prior to reading
  339. matrix_row_t last_row_value = current_matrix[row_index];
  340. // Check row pin state
  341. if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
  342. {
  343. // Pin LO, set col bit
  344. current_matrix[row_index] |= (ROW_SHIFTER << current_col);
  345. }
  346. else
  347. {
  348. // Pin HI, clear col bit
  349. current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
  350. }
  351. // Determine if the matrix changed state
  352. if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
  353. {
  354. matrix_changed = true;
  355. }
  356. }
  357. // Unselect col
  358. unselect_col(current_col);
  359. return matrix_changed;
  360. }
  361. static void select_col(uint8_t col)
  362. {
  363. uint8_t pin = col_pins[col];
  364. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  365. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  366. }
  367. static void unselect_col(uint8_t col)
  368. {
  369. uint8_t pin = col_pins[col];
  370. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  371. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  372. }
  373. static void unselect_cols(void)
  374. {
  375. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  376. uint8_t pin = col_pins[x];
  377. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  378. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  379. }
  380. }
  381. #endif