quantum.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
  18. # include "rgb.h"
  19. #endif
  20. #ifdef PROTOCOL_LUFA
  21. # include "outputselect.h"
  22. #endif
  23. #ifndef BREATHING_PERIOD
  24. # define BREATHING_PERIOD 6
  25. #endif
  26. #include "backlight.h"
  27. extern backlight_config_t backlight_config;
  28. #ifdef FAUXCLICKY_ENABLE
  29. # include "fauxclicky.h"
  30. #endif
  31. #ifdef API_ENABLE
  32. # include "api.h"
  33. #endif
  34. #ifdef MIDI_ENABLE
  35. # include "process_midi.h"
  36. #endif
  37. #ifdef VELOCIKEY_ENABLE
  38. # include "velocikey.h"
  39. #endif
  40. #ifdef HAPTIC_ENABLE
  41. # include "haptic.h"
  42. #endif
  43. #ifdef ENCODER_ENABLE
  44. # include "encoder.h"
  45. #endif
  46. #ifdef AUDIO_ENABLE
  47. # ifndef GOODBYE_SONG
  48. # define GOODBYE_SONG SONG(GOODBYE_SOUND)
  49. # endif
  50. # ifndef AG_NORM_SONG
  51. # define AG_NORM_SONG SONG(AG_NORM_SOUND)
  52. # endif
  53. # ifndef AG_SWAP_SONG
  54. # define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  55. # endif
  56. # ifndef CG_NORM_SONG
  57. # define CG_NORM_SONG SONG(AG_NORM_SOUND)
  58. # endif
  59. # ifndef CG_SWAP_SONG
  60. # define CG_SWAP_SONG SONG(AG_SWAP_SOUND)
  61. # endif
  62. float goodbye_song[][2] = GOODBYE_SONG;
  63. float ag_norm_song[][2] = AG_NORM_SONG;
  64. float ag_swap_song[][2] = AG_SWAP_SONG;
  65. float cg_norm_song[][2] = CG_NORM_SONG;
  66. float cg_swap_song[][2] = CG_SWAP_SONG;
  67. # ifdef DEFAULT_LAYER_SONGS
  68. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  69. # endif
  70. #endif
  71. static void do_code16(uint16_t code, void (*f)(uint8_t)) {
  72. switch (code) {
  73. case QK_MODS ... QK_MODS_MAX:
  74. break;
  75. default:
  76. return;
  77. }
  78. if (code & QK_LCTL) f(KC_LCTL);
  79. if (code & QK_LSFT) f(KC_LSFT);
  80. if (code & QK_LALT) f(KC_LALT);
  81. if (code & QK_LGUI) f(KC_LGUI);
  82. if (code < QK_RMODS_MIN) return;
  83. if (code & QK_RCTL) f(KC_RCTL);
  84. if (code & QK_RSFT) f(KC_RSFT);
  85. if (code & QK_RALT) f(KC_RALT);
  86. if (code & QK_RGUI) f(KC_RGUI);
  87. }
  88. static inline void qk_register_weak_mods(uint8_t kc) {
  89. add_weak_mods(MOD_BIT(kc));
  90. send_keyboard_report();
  91. }
  92. static inline void qk_unregister_weak_mods(uint8_t kc) {
  93. del_weak_mods(MOD_BIT(kc));
  94. send_keyboard_report();
  95. }
  96. static inline void qk_register_mods(uint8_t kc) {
  97. add_weak_mods(MOD_BIT(kc));
  98. send_keyboard_report();
  99. }
  100. static inline void qk_unregister_mods(uint8_t kc) {
  101. del_weak_mods(MOD_BIT(kc));
  102. send_keyboard_report();
  103. }
  104. void register_code16(uint16_t code) {
  105. if (IS_MOD(code) || code == KC_NO) {
  106. do_code16(code, qk_register_mods);
  107. } else {
  108. do_code16(code, qk_register_weak_mods);
  109. }
  110. register_code(code);
  111. }
  112. void unregister_code16(uint16_t code) {
  113. unregister_code(code);
  114. if (IS_MOD(code) || code == KC_NO) {
  115. do_code16(code, qk_unregister_mods);
  116. } else {
  117. do_code16(code, qk_unregister_weak_mods);
  118. }
  119. }
  120. void tap_code16(uint16_t code) {
  121. register_code16(code);
  122. #if TAP_CODE_DELAY > 0
  123. wait_ms(TAP_CODE_DELAY);
  124. #endif
  125. unregister_code16(code);
  126. }
  127. __attribute__((weak)) bool process_action_kb(keyrecord_t *record) { return true; }
  128. __attribute__((weak)) bool process_record_kb(uint16_t keycode, keyrecord_t *record) { return process_record_user(keycode, record); }
  129. __attribute__((weak)) bool process_record_user(uint16_t keycode, keyrecord_t *record) { return true; }
  130. void reset_keyboard(void) {
  131. clear_keyboard();
  132. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  133. process_midi_all_notes_off();
  134. #endif
  135. #ifdef AUDIO_ENABLE
  136. # ifndef NO_MUSIC_MODE
  137. music_all_notes_off();
  138. # endif
  139. uint16_t timer_start = timer_read();
  140. PLAY_SONG(goodbye_song);
  141. shutdown_user();
  142. while (timer_elapsed(timer_start) < 250) wait_ms(1);
  143. stop_all_notes();
  144. #else
  145. shutdown_user();
  146. wait_ms(250);
  147. #endif
  148. #ifdef HAPTIC_ENABLE
  149. haptic_shutdown();
  150. #endif
  151. // this is also done later in bootloader.c - not sure if it's neccesary here
  152. #ifdef BOOTLOADER_CATERINA
  153. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  154. #endif
  155. bootloader_jump();
  156. }
  157. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  158. * Used to ensure that the correct keycode is released if the key is released.
  159. */
  160. static bool grave_esc_was_shifted = false;
  161. /* Convert record into usable keycode via the contained event. */
  162. uint16_t get_record_keycode(keyrecord_t *record) { return get_event_keycode(record->event); }
  163. /* Convert event into usable keycode. Checks the layer cache to ensure that it
  164. * retains the correct keycode after a layer change, if the key is still pressed.
  165. */
  166. uint16_t get_event_keycode(keyevent_t event) {
  167. #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
  168. /* TODO: Use store_or_get_action() or a similar function. */
  169. if (!disable_action_cache) {
  170. uint8_t layer;
  171. if (event.pressed) {
  172. layer = layer_switch_get_layer(event.key);
  173. update_source_layers_cache(event.key, layer);
  174. } else {
  175. layer = read_source_layers_cache(event.key);
  176. }
  177. return keymap_key_to_keycode(layer, event.key);
  178. } else
  179. #endif
  180. return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key);
  181. }
  182. /* Main keycode processing function. Hands off handling to other functions,
  183. * then processes internal Quantum keycodes, then processes ACTIONs.
  184. */
  185. bool process_record_quantum(keyrecord_t *record) {
  186. uint16_t keycode = get_record_keycode(record);
  187. // This is how you use actions here
  188. // if (keycode == KC_LEAD) {
  189. // action_t action;
  190. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  191. // process_action(record, action);
  192. // return false;
  193. // }
  194. #ifdef VELOCIKEY_ENABLE
  195. if (velocikey_enabled() && record->event.pressed) {
  196. velocikey_accelerate();
  197. }
  198. #endif
  199. #ifdef TAP_DANCE_ENABLE
  200. preprocess_tap_dance(keycode, record);
  201. #endif
  202. if (!(
  203. #if defined(KEY_LOCK_ENABLE)
  204. // Must run first to be able to mask key_up events.
  205. process_key_lock(&keycode, record) &&
  206. #endif
  207. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  208. process_clicky(keycode, record) &&
  209. #endif // AUDIO_CLICKY
  210. #ifdef HAPTIC_ENABLE
  211. process_haptic(keycode, record) &&
  212. #endif // HAPTIC_ENABLE
  213. #if defined(RGB_MATRIX_ENABLE)
  214. process_rgb_matrix(keycode, record) &&
  215. #endif
  216. process_record_kb(keycode, record) &&
  217. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  218. process_midi(keycode, record) &&
  219. #endif
  220. #ifdef AUDIO_ENABLE
  221. process_audio(keycode, record) &&
  222. #endif
  223. #ifdef STENO_ENABLE
  224. process_steno(keycode, record) &&
  225. #endif
  226. #if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  227. process_music(keycode, record) &&
  228. #endif
  229. #ifdef TAP_DANCE_ENABLE
  230. process_tap_dance(keycode, record) &&
  231. #endif
  232. #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
  233. process_unicode_common(keycode, record) &&
  234. #endif
  235. #ifdef LEADER_ENABLE
  236. process_leader(keycode, record) &&
  237. #endif
  238. #ifdef COMBO_ENABLE
  239. process_combo(keycode, record) &&
  240. #endif
  241. #ifdef PRINTING_ENABLE
  242. process_printer(keycode, record) &&
  243. #endif
  244. #ifdef AUTO_SHIFT_ENABLE
  245. process_auto_shift(keycode, record) &&
  246. #endif
  247. #ifdef TERMINAL_ENABLE
  248. process_terminal(keycode, record) &&
  249. #endif
  250. #ifdef SPACE_CADET_ENABLE
  251. process_space_cadet(keycode, record) &&
  252. #endif
  253. true)) {
  254. return false;
  255. }
  256. // Shift / paren setup
  257. switch (keycode) {
  258. case RESET:
  259. if (record->event.pressed) {
  260. reset_keyboard();
  261. }
  262. return false;
  263. case DEBUG:
  264. if (record->event.pressed) {
  265. debug_enable ^= 1;
  266. if (debug_enable) {
  267. print("DEBUG: enabled.\n");
  268. } else {
  269. print("DEBUG: disabled.\n");
  270. }
  271. }
  272. return false;
  273. case EEPROM_RESET:
  274. if (record->event.pressed) {
  275. eeconfig_init();
  276. }
  277. return false;
  278. #ifdef FAUXCLICKY_ENABLE
  279. case FC_TOG:
  280. if (record->event.pressed) {
  281. FAUXCLICKY_TOGGLE;
  282. }
  283. return false;
  284. case FC_ON:
  285. if (record->event.pressed) {
  286. FAUXCLICKY_ON;
  287. }
  288. return false;
  289. case FC_OFF:
  290. if (record->event.pressed) {
  291. FAUXCLICKY_OFF;
  292. }
  293. return false;
  294. #endif
  295. #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  296. case RGB_TOG:
  297. // Split keyboards need to trigger on key-up for edge-case issue
  298. # ifndef SPLIT_KEYBOARD
  299. if (record->event.pressed) {
  300. # else
  301. if (!record->event.pressed) {
  302. # endif
  303. rgblight_toggle();
  304. }
  305. return false;
  306. case RGB_MODE_FORWARD:
  307. if (record->event.pressed) {
  308. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT));
  309. if (shifted) {
  310. rgblight_step_reverse();
  311. } else {
  312. rgblight_step();
  313. }
  314. }
  315. return false;
  316. case RGB_MODE_REVERSE:
  317. if (record->event.pressed) {
  318. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT));
  319. if (shifted) {
  320. rgblight_step();
  321. } else {
  322. rgblight_step_reverse();
  323. }
  324. }
  325. return false;
  326. case RGB_HUI:
  327. // Split keyboards need to trigger on key-up for edge-case issue
  328. # ifndef SPLIT_KEYBOARD
  329. if (record->event.pressed) {
  330. # else
  331. if (!record->event.pressed) {
  332. # endif
  333. rgblight_increase_hue();
  334. }
  335. return false;
  336. case RGB_HUD:
  337. // Split keyboards need to trigger on key-up for edge-case issue
  338. # ifndef SPLIT_KEYBOARD
  339. if (record->event.pressed) {
  340. # else
  341. if (!record->event.pressed) {
  342. # endif
  343. rgblight_decrease_hue();
  344. }
  345. return false;
  346. case RGB_SAI:
  347. // Split keyboards need to trigger on key-up for edge-case issue
  348. # ifndef SPLIT_KEYBOARD
  349. if (record->event.pressed) {
  350. # else
  351. if (!record->event.pressed) {
  352. # endif
  353. rgblight_increase_sat();
  354. }
  355. return false;
  356. case RGB_SAD:
  357. // Split keyboards need to trigger on key-up for edge-case issue
  358. # ifndef SPLIT_KEYBOARD
  359. if (record->event.pressed) {
  360. # else
  361. if (!record->event.pressed) {
  362. # endif
  363. rgblight_decrease_sat();
  364. }
  365. return false;
  366. case RGB_VAI:
  367. // Split keyboards need to trigger on key-up for edge-case issue
  368. # ifndef SPLIT_KEYBOARD
  369. if (record->event.pressed) {
  370. # else
  371. if (!record->event.pressed) {
  372. # endif
  373. rgblight_increase_val();
  374. }
  375. return false;
  376. case RGB_VAD:
  377. // Split keyboards need to trigger on key-up for edge-case issue
  378. # ifndef SPLIT_KEYBOARD
  379. if (record->event.pressed) {
  380. # else
  381. if (!record->event.pressed) {
  382. # endif
  383. rgblight_decrease_val();
  384. }
  385. return false;
  386. case RGB_SPI:
  387. if (record->event.pressed) {
  388. rgblight_increase_speed();
  389. }
  390. return false;
  391. case RGB_SPD:
  392. if (record->event.pressed) {
  393. rgblight_decrease_speed();
  394. }
  395. return false;
  396. case RGB_MODE_PLAIN:
  397. if (record->event.pressed) {
  398. rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
  399. }
  400. return false;
  401. case RGB_MODE_BREATHE:
  402. # ifdef RGBLIGHT_EFFECT_BREATHING
  403. if (record->event.pressed) {
  404. if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
  405. rgblight_step();
  406. } else {
  407. rgblight_mode(RGBLIGHT_MODE_BREATHING);
  408. }
  409. }
  410. # endif
  411. return false;
  412. case RGB_MODE_RAINBOW:
  413. # ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
  414. if (record->event.pressed) {
  415. if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
  416. rgblight_step();
  417. } else {
  418. rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
  419. }
  420. }
  421. # endif
  422. return false;
  423. case RGB_MODE_SWIRL:
  424. # ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
  425. if (record->event.pressed) {
  426. if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
  427. rgblight_step();
  428. } else {
  429. rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
  430. }
  431. }
  432. # endif
  433. return false;
  434. case RGB_MODE_SNAKE:
  435. # ifdef RGBLIGHT_EFFECT_SNAKE
  436. if (record->event.pressed) {
  437. if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
  438. rgblight_step();
  439. } else {
  440. rgblight_mode(RGBLIGHT_MODE_SNAKE);
  441. }
  442. }
  443. # endif
  444. return false;
  445. case RGB_MODE_KNIGHT:
  446. # ifdef RGBLIGHT_EFFECT_KNIGHT
  447. if (record->event.pressed) {
  448. if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
  449. rgblight_step();
  450. } else {
  451. rgblight_mode(RGBLIGHT_MODE_KNIGHT);
  452. }
  453. }
  454. # endif
  455. return false;
  456. case RGB_MODE_XMAS:
  457. # ifdef RGBLIGHT_EFFECT_CHRISTMAS
  458. if (record->event.pressed) {
  459. rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
  460. }
  461. # endif
  462. return false;
  463. case RGB_MODE_GRADIENT:
  464. # ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
  465. if (record->event.pressed) {
  466. if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) && (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
  467. rgblight_step();
  468. } else {
  469. rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
  470. }
  471. }
  472. # endif
  473. return false;
  474. case RGB_MODE_RGBTEST:
  475. # ifdef RGBLIGHT_EFFECT_RGB_TEST
  476. if (record->event.pressed) {
  477. rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
  478. }
  479. # endif
  480. return false;
  481. #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  482. #ifdef VELOCIKEY_ENABLE
  483. case VLK_TOG:
  484. if (record->event.pressed) {
  485. velocikey_toggle();
  486. }
  487. return false;
  488. #endif
  489. #ifdef PROTOCOL_LUFA
  490. case OUT_AUTO:
  491. if (record->event.pressed) {
  492. set_output(OUTPUT_AUTO);
  493. }
  494. return false;
  495. case OUT_USB:
  496. if (record->event.pressed) {
  497. set_output(OUTPUT_USB);
  498. }
  499. return false;
  500. # ifdef BLUETOOTH_ENABLE
  501. case OUT_BT:
  502. if (record->event.pressed) {
  503. set_output(OUTPUT_BLUETOOTH);
  504. }
  505. return false;
  506. # endif
  507. #endif
  508. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_ALT_GUI:
  509. case MAGIC_SWAP_LCTL_LGUI ... MAGIC_TOGGLE_CTL_GUI:
  510. if (record->event.pressed) {
  511. // MAGIC actions (BOOTMAGIC without the boot)
  512. if (!eeconfig_is_enabled()) {
  513. eeconfig_init();
  514. }
  515. /* keymap config */
  516. keymap_config.raw = eeconfig_read_keymap();
  517. switch (keycode) {
  518. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  519. keymap_config.swap_control_capslock = true;
  520. break;
  521. case MAGIC_CAPSLOCK_TO_CONTROL:
  522. keymap_config.capslock_to_control = true;
  523. break;
  524. case MAGIC_SWAP_LALT_LGUI:
  525. keymap_config.swap_lalt_lgui = true;
  526. break;
  527. case MAGIC_SWAP_RALT_RGUI:
  528. keymap_config.swap_ralt_rgui = true;
  529. break;
  530. case MAGIC_SWAP_LCTL_LGUI:
  531. keymap_config.swap_lctl_lgui = true;
  532. break;
  533. case MAGIC_SWAP_RCTL_RGUI:
  534. keymap_config.swap_rctl_rgui = true;
  535. break;
  536. case MAGIC_NO_GUI:
  537. keymap_config.no_gui = true;
  538. break;
  539. case MAGIC_SWAP_GRAVE_ESC:
  540. keymap_config.swap_grave_esc = true;
  541. break;
  542. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  543. keymap_config.swap_backslash_backspace = true;
  544. break;
  545. case MAGIC_HOST_NKRO:
  546. keymap_config.nkro = true;
  547. break;
  548. case MAGIC_SWAP_ALT_GUI:
  549. keymap_config.swap_lalt_lgui = keymap_config.swap_ralt_rgui = true;
  550. #ifdef AUDIO_ENABLE
  551. PLAY_SONG(ag_swap_song);
  552. #endif
  553. break;
  554. case MAGIC_SWAP_CTL_GUI:
  555. keymap_config.swap_lctl_lgui = keymap_config.swap_rctl_rgui = true;
  556. #ifdef AUDIO_ENABLE
  557. PLAY_SONG(cg_swap_song);
  558. #endif
  559. break;
  560. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  561. keymap_config.swap_control_capslock = false;
  562. break;
  563. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  564. keymap_config.capslock_to_control = false;
  565. break;
  566. case MAGIC_UNSWAP_LALT_LGUI:
  567. keymap_config.swap_lalt_lgui = false;
  568. break;
  569. case MAGIC_UNSWAP_RALT_RGUI:
  570. keymap_config.swap_ralt_rgui = false;
  571. break;
  572. case MAGIC_UNSWAP_LCTL_LGUI:
  573. keymap_config.swap_lctl_lgui = false;
  574. break;
  575. case MAGIC_UNSWAP_RCTL_RGUI:
  576. keymap_config.swap_rctl_rgui = false;
  577. break;
  578. case MAGIC_UNNO_GUI:
  579. keymap_config.no_gui = false;
  580. break;
  581. case MAGIC_UNSWAP_GRAVE_ESC:
  582. keymap_config.swap_grave_esc = false;
  583. break;
  584. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  585. keymap_config.swap_backslash_backspace = false;
  586. break;
  587. case MAGIC_UNHOST_NKRO:
  588. keymap_config.nkro = false;
  589. break;
  590. case MAGIC_UNSWAP_ALT_GUI:
  591. keymap_config.swap_lalt_lgui = keymap_config.swap_ralt_rgui = false;
  592. #ifdef AUDIO_ENABLE
  593. PLAY_SONG(ag_norm_song);
  594. #endif
  595. break;
  596. case MAGIC_UNSWAP_CTL_GUI:
  597. keymap_config.swap_lctl_lgui = keymap_config.swap_rctl_rgui = false;
  598. #ifdef AUDIO_ENABLE
  599. PLAY_SONG(cg_norm_song);
  600. #endif
  601. break;
  602. case MAGIC_TOGGLE_ALT_GUI:
  603. keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
  604. keymap_config.swap_ralt_rgui = keymap_config.swap_lalt_lgui;
  605. #ifdef AUDIO_ENABLE
  606. if (keymap_config.swap_ralt_rgui) {
  607. PLAY_SONG(ag_swap_song);
  608. } else {
  609. PLAY_SONG(ag_norm_song);
  610. }
  611. #endif
  612. break;
  613. case MAGIC_TOGGLE_CTL_GUI:
  614. keymap_config.swap_lctl_lgui = !keymap_config.swap_lctl_lgui;
  615. keymap_config.swap_rctl_rgui = keymap_config.swap_lctl_lgui;
  616. #ifdef AUDIO_ENABLE
  617. if (keymap_config.swap_rctl_rgui) {
  618. PLAY_SONG(cg_swap_song);
  619. } else {
  620. PLAY_SONG(cg_norm_song);
  621. }
  622. #endif
  623. break;
  624. case MAGIC_TOGGLE_NKRO:
  625. keymap_config.nkro = !keymap_config.nkro;
  626. break;
  627. default:
  628. break;
  629. }
  630. eeconfig_update_keymap(keymap_config.raw);
  631. clear_keyboard(); // clear to prevent stuck keys
  632. return false;
  633. }
  634. break;
  635. case GRAVE_ESC: {
  636. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT) | MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI)));
  637. #ifdef GRAVE_ESC_ALT_OVERRIDE
  638. // if ALT is pressed, ESC is always sent
  639. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  640. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  641. shifted = 0;
  642. }
  643. #endif
  644. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  645. // if CTRL is pressed, ESC is always sent
  646. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  647. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  648. shifted = 0;
  649. }
  650. #endif
  651. #ifdef GRAVE_ESC_GUI_OVERRIDE
  652. // if GUI is pressed, ESC is always sent
  653. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  654. shifted = 0;
  655. }
  656. #endif
  657. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  658. // if SHIFT is pressed, ESC is always sent
  659. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  660. shifted = 0;
  661. }
  662. #endif
  663. if (record->event.pressed) {
  664. grave_esc_was_shifted = shifted;
  665. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  666. } else {
  667. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  668. }
  669. send_keyboard_report();
  670. return false;
  671. }
  672. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  673. case BL_BRTG: {
  674. if (record->event.pressed) {
  675. backlight_toggle_breathing();
  676. }
  677. return false;
  678. }
  679. #endif
  680. }
  681. return process_action_kb(record);
  682. }
  683. __attribute__((weak)) const bool ascii_to_shift_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  684. 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0};
  685. __attribute__((weak)) const bool ascii_to_altgr_lut[128] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  686. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  687. __attribute__((weak)) const uint8_t ascii_to_keycode_lut[128] PROGMEM = {// NUL SOH STX ETX EOT ENQ ACK BEL
  688. XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
  689. // BS TAB LF VT FF CR SO SI
  690. KC_BSPC, KC_TAB, KC_ENT, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
  691. // DLE DC1 DC2 DC3 DC4 NAK SYN ETB
  692. XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
  693. // CAN EM SUB ESC FS GS RS US
  694. XXXXXXX, XXXXXXX, XXXXXXX, KC_ESC, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,
  695. // ! " # $ % & '
  696. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  697. // ( ) * + , - . /
  698. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  699. // 0 1 2 3 4 5 6 7
  700. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  701. // 8 9 : ; < = > ?
  702. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  703. // @ A B C D E F G
  704. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  705. // H I J K L M N O
  706. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  707. // P Q R S T U V W
  708. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  709. // X Y Z [ \ ] ^ _
  710. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  711. // ` a b c d e f g
  712. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  713. // h i j k l m n o
  714. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  715. // p q r s t u v w
  716. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  717. // x y z { | } ~ DEL
  718. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL};
  719. void send_string(const char *str) { send_string_with_delay(str, 0); }
  720. void send_string_P(const char *str) { send_string_with_delay_P(str, 0); }
  721. void send_string_with_delay(const char *str, uint8_t interval) {
  722. while (1) {
  723. char ascii_code = *str;
  724. if (!ascii_code) break;
  725. if (ascii_code == SS_TAP_CODE) {
  726. // tap
  727. uint8_t keycode = *(++str);
  728. register_code(keycode);
  729. unregister_code(keycode);
  730. } else if (ascii_code == SS_DOWN_CODE) {
  731. // down
  732. uint8_t keycode = *(++str);
  733. register_code(keycode);
  734. } else if (ascii_code == SS_UP_CODE) {
  735. // up
  736. uint8_t keycode = *(++str);
  737. unregister_code(keycode);
  738. } else {
  739. send_char(ascii_code);
  740. }
  741. ++str;
  742. // interval
  743. {
  744. uint8_t ms = interval;
  745. while (ms--) wait_ms(1);
  746. }
  747. }
  748. }
  749. void send_string_with_delay_P(const char *str, uint8_t interval) {
  750. while (1) {
  751. char ascii_code = pgm_read_byte(str);
  752. if (!ascii_code) break;
  753. if (ascii_code == SS_TAP_CODE) {
  754. // tap
  755. uint8_t keycode = pgm_read_byte(++str);
  756. register_code(keycode);
  757. unregister_code(keycode);
  758. } else if (ascii_code == SS_DOWN_CODE) {
  759. // down
  760. uint8_t keycode = pgm_read_byte(++str);
  761. register_code(keycode);
  762. } else if (ascii_code == SS_UP_CODE) {
  763. // up
  764. uint8_t keycode = pgm_read_byte(++str);
  765. unregister_code(keycode);
  766. } else {
  767. send_char(ascii_code);
  768. }
  769. ++str;
  770. // interval
  771. {
  772. uint8_t ms = interval;
  773. while (ms--) wait_ms(1);
  774. }
  775. }
  776. }
  777. void send_char(char ascii_code) {
  778. uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  779. bool is_shifted = pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code]);
  780. bool is_altgred = pgm_read_byte(&ascii_to_altgr_lut[(uint8_t)ascii_code]);
  781. if (is_shifted) {
  782. register_code(KC_LSFT);
  783. }
  784. if (is_altgred) {
  785. register_code(KC_RALT);
  786. }
  787. tap_code(keycode);
  788. if (is_altgred) {
  789. unregister_code(KC_RALT);
  790. }
  791. if (is_shifted) {
  792. unregister_code(KC_LSFT);
  793. }
  794. }
  795. void set_single_persistent_default_layer(uint8_t default_layer) {
  796. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  797. PLAY_SONG(default_layer_songs[default_layer]);
  798. #endif
  799. eeconfig_update_default_layer(1U << default_layer);
  800. default_layer_set(1U << default_layer);
  801. }
  802. layer_state_t update_tri_layer_state(layer_state_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  803. layer_state_t mask12 = (1UL << layer1) | (1UL << layer2);
  804. layer_state_t mask3 = 1UL << layer3;
  805. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  806. }
  807. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) { layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3)); }
  808. void tap_random_base64(void) {
  809. #if defined(__AVR_ATmega32U4__)
  810. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  811. #else
  812. uint8_t key = rand() % 64;
  813. #endif
  814. switch (key) {
  815. case 0 ... 25:
  816. register_code(KC_LSFT);
  817. register_code(key + KC_A);
  818. unregister_code(key + KC_A);
  819. unregister_code(KC_LSFT);
  820. break;
  821. case 26 ... 51:
  822. register_code(key - 26 + KC_A);
  823. unregister_code(key - 26 + KC_A);
  824. break;
  825. case 52:
  826. register_code(KC_0);
  827. unregister_code(KC_0);
  828. break;
  829. case 53 ... 61:
  830. register_code(key - 53 + KC_1);
  831. unregister_code(key - 53 + KC_1);
  832. break;
  833. case 62:
  834. register_code(KC_LSFT);
  835. register_code(KC_EQL);
  836. unregister_code(KC_EQL);
  837. unregister_code(KC_LSFT);
  838. break;
  839. case 63:
  840. register_code(KC_SLSH);
  841. unregister_code(KC_SLSH);
  842. break;
  843. }
  844. }
  845. __attribute__((weak)) void bootmagic_lite(void) {
  846. // The lite version of TMK's bootmagic based on Wilba.
  847. // 100% less potential for accidentally making the
  848. // keyboard do stupid things.
  849. // We need multiple scans because debouncing can't be turned off.
  850. matrix_scan();
  851. #if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0
  852. wait_ms(DEBOUNCING_DELAY * 2);
  853. #elif defined(DEBOUNCE) && DEBOUNCE > 0
  854. wait_ms(DEBOUNCE * 2);
  855. #else
  856. wait_ms(30);
  857. #endif
  858. matrix_scan();
  859. // If the Esc and space bar are held down on power up,
  860. // reset the EEPROM valid state and jump to bootloader.
  861. // Assumes Esc is at [0,0].
  862. // This isn't very generalized, but we need something that doesn't
  863. // rely on user's keymaps in firmware or EEPROM.
  864. if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
  865. eeconfig_disable();
  866. // Jump to bootloader.
  867. bootloader_jump();
  868. }
  869. }
  870. void matrix_init_quantum() {
  871. #ifdef BOOTMAGIC_LITE
  872. bootmagic_lite();
  873. #endif
  874. if (!eeconfig_is_enabled()) {
  875. eeconfig_init();
  876. }
  877. #ifdef BACKLIGHT_ENABLE
  878. # ifdef LED_MATRIX_ENABLE
  879. led_matrix_init();
  880. # else
  881. backlight_init_ports();
  882. # endif
  883. #endif
  884. #ifdef AUDIO_ENABLE
  885. audio_init();
  886. #endif
  887. #ifdef RGB_MATRIX_ENABLE
  888. rgb_matrix_init();
  889. #endif
  890. #ifdef ENCODER_ENABLE
  891. encoder_init();
  892. #endif
  893. #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
  894. unicode_input_mode_init();
  895. #endif
  896. #ifdef HAPTIC_ENABLE
  897. haptic_init();
  898. #endif
  899. #ifdef OUTPUT_AUTO_ENABLE
  900. set_output(OUTPUT_AUTO);
  901. #endif
  902. #ifdef DIP_SWITCH_ENABLE
  903. dip_switch_init();
  904. #endif
  905. matrix_init_kb();
  906. }
  907. void matrix_scan_quantum() {
  908. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  909. matrix_scan_music();
  910. #endif
  911. #ifdef TAP_DANCE_ENABLE
  912. matrix_scan_tap_dance();
  913. #endif
  914. #ifdef COMBO_ENABLE
  915. matrix_scan_combo();
  916. #endif
  917. #if defined(BACKLIGHT_ENABLE)
  918. # if defined(LED_MATRIX_ENABLE)
  919. led_matrix_task();
  920. # elif defined(BACKLIGHT_PIN)
  921. backlight_task();
  922. # endif
  923. #endif
  924. #ifdef RGB_MATRIX_ENABLE
  925. rgb_matrix_task();
  926. #endif
  927. #ifdef ENCODER_ENABLE
  928. encoder_read();
  929. #endif
  930. #ifdef HAPTIC_ENABLE
  931. haptic_task();
  932. #endif
  933. #ifdef DIP_SWITCH_ENABLE
  934. dip_switch_read(false);
  935. #endif
  936. matrix_scan_kb();
  937. }
  938. #if defined(BACKLIGHT_ENABLE) && (defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS))
  939. // This logic is a bit complex, we support 3 setups:
  940. //
  941. // 1. Hardware PWM when backlight is wired to a PWM pin.
  942. // Depending on this pin, we use a different output compare unit.
  943. // 2. Software PWM with hardware timers, but the used timer
  944. // depends on the Audio setup (Audio wins over Backlight).
  945. // 3. Full software PWM, driven by the matrix scan, if both timers are used by Audio.
  946. # if (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == B5 || BACKLIGHT_PIN == B6 || BACKLIGHT_PIN == B7)
  947. # define HARDWARE_PWM
  948. # define ICRx ICR1
  949. # define TCCRxA TCCR1A
  950. # define TCCRxB TCCR1B
  951. # define TIMERx_OVF_vect TIMER1_OVF_vect
  952. # define TIMSKx TIMSK1
  953. # define TOIEx TOIE1
  954. # if BACKLIGHT_PIN == B5
  955. # define COMxx1 COM1A1
  956. # define OCRxx OCR1A
  957. # elif BACKLIGHT_PIN == B6
  958. # define COMxx1 COM1B1
  959. # define OCRxx OCR1B
  960. # elif BACKLIGHT_PIN == B7
  961. # define COMxx1 COM1C1
  962. # define OCRxx OCR1C
  963. # endif
  964. # elif (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == C4 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
  965. # define HARDWARE_PWM
  966. # define ICRx ICR3
  967. # define TCCRxA TCCR3A
  968. # define TCCRxB TCCR3B
  969. # define TIMERx_OVF_vect TIMER3_OVF_vect
  970. # define TIMSKx TIMSK3
  971. # define TOIEx TOIE3
  972. # if BACKLIGHT_PIN == C4
  973. # if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
  974. # error This MCU has no C4 pin!
  975. # else
  976. # define COMxx1 COM3C1
  977. # define OCRxx OCR3C
  978. # endif
  979. # elif BACKLIGHT_PIN == C5
  980. # if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
  981. # error This MCU has no C5 pin!
  982. # else
  983. # define COMxx1 COM3B1
  984. # define OCRxx OCR3B
  985. # endif
  986. # elif BACKLIGHT_PIN == C6
  987. # define COMxx1 COM3A1
  988. # define OCRxx OCR3A
  989. # endif
  990. # elif (defined(__AVR_ATmega16U2__) || defined(__AVR_ATmega32U2__)) && (BACKLIGHT_PIN == B7 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
  991. # define HARDWARE_PWM
  992. # define ICRx ICR1
  993. # define TCCRxA TCCR1A
  994. # define TCCRxB TCCR1B
  995. # define TIMERx_OVF_vect TIMER1_OVF_vect
  996. # define TIMSKx TIMSK1
  997. # define TOIEx TOIE1
  998. # if BACKLIGHT_PIN == B7
  999. # define COMxx1 COM1C1
  1000. # define OCRxx OCR1C
  1001. # elif BACKLIGHT_PIN == C5
  1002. # define COMxx1 COM1B1
  1003. # define OCRxx OCR1B
  1004. # elif BACKLIGHT_PIN == C6
  1005. # define COMxx1 COM1A1
  1006. # define OCRxx OCR1A
  1007. # endif
  1008. # elif defined(__AVR_ATmega32A__) && (BACKLIGHT_PIN == D4 || BACKLIGHT_PIN == D5)
  1009. # define HARDWARE_PWM
  1010. # define ICRx ICR1
  1011. # define TCCRxA TCCR1A
  1012. # define TCCRxB TCCR1B
  1013. # define TIMERx_OVF_vect TIMER1_OVF_vect
  1014. # define TIMSKx TIMSK
  1015. # define TOIEx TOIE1
  1016. # if BACKLIGHT_PIN == D4
  1017. # define COMxx1 COM1B1
  1018. # define OCRxx OCR1B
  1019. # elif BACKLIGHT_PIN == D5
  1020. # define COMxx1 COM1A1
  1021. # define OCRxx OCR1A
  1022. # endif
  1023. # elif defined(__AVR_ATmega328P__) && (BACKLIGHT_PIN == B1 || BACKLIGHT_PIN == B2)
  1024. # define HARDWARE_PWM
  1025. # define ICRx ICR1
  1026. # define TCCRxA TCCR1A
  1027. # define TCCRxB TCCR1B
  1028. # define TIMERx_OVF_vect TIMER1_OVF_vect
  1029. # define TIMSKx TIMSK1
  1030. # define TOIEx TOIE1
  1031. # if BACKLIGHT_PIN == B1
  1032. # define COMxx1 COM1A1
  1033. # define OCRxx OCR1A
  1034. # elif BACKLIGHT_PIN == B2
  1035. # define COMxx1 COM1B1
  1036. # define OCRxx OCR1B
  1037. # endif
  1038. # else
  1039. # if !defined(BACKLIGHT_CUSTOM_DRIVER)
  1040. # if !defined(B5_AUDIO) && !defined(B6_AUDIO) && !defined(B7_AUDIO)
  1041. // Timer 1 is not in use by Audio feature, Backlight can use it
  1042. # pragma message "Using hardware timer 1 with software PWM"
  1043. # define HARDWARE_PWM
  1044. # define BACKLIGHT_PWM_TIMER
  1045. # define ICRx ICR1
  1046. # define TCCRxA TCCR1A
  1047. # define TCCRxB TCCR1B
  1048. # define TIMERx_COMPA_vect TIMER1_COMPA_vect
  1049. # define TIMERx_OVF_vect TIMER1_OVF_vect
  1050. # if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register
  1051. # define TIMSKx TIMSK
  1052. # else
  1053. # define TIMSKx TIMSK1
  1054. # endif
  1055. # define TOIEx TOIE1
  1056. # define OCIExA OCIE1A
  1057. # define OCRxx OCR1A
  1058. # elif !defined(C6_AUDIO) && !defined(C5_AUDIO) && !defined(C4_AUDIO)
  1059. # pragma message "Using hardware timer 3 with software PWM"
  1060. // Timer 3 is not in use by Audio feature, Backlight can use it
  1061. # define HARDWARE_PWM
  1062. # define BACKLIGHT_PWM_TIMER
  1063. # define ICRx ICR1
  1064. # define TCCRxA TCCR3A
  1065. # define TCCRxB TCCR3B
  1066. # define TIMERx_COMPA_vect TIMER3_COMPA_vect
  1067. # define TIMERx_OVF_vect TIMER3_OVF_vect
  1068. # define TIMSKx TIMSK3
  1069. # define TOIEx TOIE3
  1070. # define OCIExA OCIE3A
  1071. # define OCRxx OCR3A
  1072. # else
  1073. # pragma message "Audio in use - using pure software PWM"
  1074. # define NO_HARDWARE_PWM
  1075. # endif
  1076. # else
  1077. # pragma message "Custom driver defined - using pure software PWM"
  1078. # define NO_HARDWARE_PWM
  1079. # endif
  1080. # endif
  1081. # ifndef BACKLIGHT_ON_STATE
  1082. # define BACKLIGHT_ON_STATE 0
  1083. # endif
  1084. void backlight_on(uint8_t backlight_pin) {
  1085. # if BACKLIGHT_ON_STATE == 0
  1086. writePinLow(backlight_pin);
  1087. # else
  1088. writePinHigh(backlight_pin);
  1089. # endif
  1090. }
  1091. void backlight_off(uint8_t backlight_pin) {
  1092. # if BACKLIGHT_ON_STATE == 0
  1093. writePinHigh(backlight_pin);
  1094. # else
  1095. writePinLow(backlight_pin);
  1096. # endif
  1097. }
  1098. # if defined(NO_HARDWARE_PWM) || defined(BACKLIGHT_PWM_TIMER) // pwm through software
  1099. // we support multiple backlight pins
  1100. # ifndef BACKLIGHT_LED_COUNT
  1101. # define BACKLIGHT_LED_COUNT 1
  1102. # endif
  1103. # if BACKLIGHT_LED_COUNT == 1
  1104. # define BACKLIGHT_PIN_INIT \
  1105. { BACKLIGHT_PIN }
  1106. # else
  1107. # define BACKLIGHT_PIN_INIT BACKLIGHT_PINS
  1108. # endif
  1109. # define FOR_EACH_LED(x) \
  1110. for (uint8_t i = 0; i < BACKLIGHT_LED_COUNT; i++) { \
  1111. uint8_t backlight_pin = backlight_pins[i]; \
  1112. { x } \
  1113. }
  1114. static const uint8_t backlight_pins[BACKLIGHT_LED_COUNT] = BACKLIGHT_PIN_INIT;
  1115. # else // full hardware PWM
  1116. // we support only one backlight pin
  1117. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  1118. # define FOR_EACH_LED(x) x
  1119. # endif
  1120. # ifdef NO_HARDWARE_PWM
  1121. __attribute__((weak)) void backlight_init_ports(void) {
  1122. // Setup backlight pin as output and output to on state.
  1123. FOR_EACH_LED(setPinOutput(backlight_pin); backlight_on(backlight_pin);)
  1124. # ifdef BACKLIGHT_BREATHING
  1125. if (is_backlight_breathing()) {
  1126. breathing_enable();
  1127. }
  1128. # endif
  1129. }
  1130. __attribute__((weak)) void backlight_set(uint8_t level) {}
  1131. uint8_t backlight_tick = 0;
  1132. # ifndef BACKLIGHT_CUSTOM_DRIVER
  1133. void backlight_task(void) {
  1134. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  1135. FOR_EACH_LED(backlight_on(backlight_pin);)
  1136. } else {
  1137. FOR_EACH_LED(backlight_off(backlight_pin);)
  1138. }
  1139. backlight_tick = (backlight_tick + 1) % 16;
  1140. }
  1141. # endif
  1142. # ifdef BACKLIGHT_BREATHING
  1143. # ifndef BACKLIGHT_CUSTOM_DRIVER
  1144. # error "Backlight breathing only available with hardware PWM. Please disable."
  1145. # endif
  1146. # endif
  1147. # else // hardware pwm through timer
  1148. # ifdef BACKLIGHT_PWM_TIMER
  1149. // The idea of software PWM assisted by hardware timers is the following
  1150. // we use the hardware timer in fast PWM mode like for hardware PWM, but
  1151. // instead of letting the Output Match Comparator control the led pin
  1152. // (which is not possible since the backlight is not wired to PWM pins on the
  1153. // CPU), we do the LED on/off by oursleves.
  1154. // The timer is setup to count up to 0xFFFF, and we set the Output Compare
  1155. // register to the current 16bits backlight level (after CIE correction).
  1156. // This means the CPU will trigger a compare match interrupt when the counter
  1157. // reaches the backlight level, where we turn off the LEDs,
  1158. // but also an overflow interrupt when the counter rolls back to 0,
  1159. // in which we're going to turn on the LEDs.
  1160. // The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.
  1161. // Triggered when the counter reaches the OCRx value
  1162. ISR(TIMERx_COMPA_vect) { FOR_EACH_LED(backlight_off(backlight_pin);) }
  1163. // Triggered when the counter reaches the TOP value
  1164. // this one triggers at F_CPU/65536 =~ 244 Hz
  1165. ISR(TIMERx_OVF_vect) {
  1166. # ifdef BACKLIGHT_BREATHING
  1167. if (is_breathing()) {
  1168. breathing_task();
  1169. }
  1170. # endif
  1171. // for very small values of OCRxx (or backlight level)
  1172. // we can't guarantee this whole code won't execute
  1173. // at the same time as the compare match interrupt
  1174. // which means that we might turn on the leds while
  1175. // trying to turn them off, leading to flickering
  1176. // artifacts (especially while breathing, because breathing_task
  1177. // takes many computation cycles).
  1178. // so better not turn them on while the counter TOP is very low.
  1179. if (OCRxx > 256) {
  1180. FOR_EACH_LED(backlight_on(backlight_pin);)
  1181. }
  1182. }
  1183. # endif
  1184. # define TIMER_TOP 0xFFFFU
  1185. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  1186. static uint16_t cie_lightness(uint16_t v) {
  1187. if (v <= 5243) // if below 8% of max
  1188. return v / 9; // same as dividing by 900%
  1189. else {
  1190. uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  1191. // to get a useful result with integer division, we shift left in the expression above
  1192. // and revert what we've done again after squaring.
  1193. y = y * y * y >> 8;
  1194. if (y > 0xFFFFUL) // prevent overflow
  1195. return 0xFFFFU;
  1196. else
  1197. return (uint16_t)y;
  1198. }
  1199. }
  1200. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  1201. static inline void set_pwm(uint16_t val) { OCRxx = val; }
  1202. # ifndef BACKLIGHT_CUSTOM_DRIVER
  1203. __attribute__((weak)) void backlight_set(uint8_t level) {
  1204. if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS;
  1205. if (level == 0) {
  1206. # ifdef BACKLIGHT_PWM_TIMER
  1207. if (OCRxx) {
  1208. TIMSKx &= ~(_BV(OCIExA));
  1209. TIMSKx &= ~(_BV(TOIEx));
  1210. FOR_EACH_LED(backlight_off(backlight_pin);)
  1211. }
  1212. # else
  1213. // Turn off PWM control on backlight pin
  1214. TCCRxA &= ~(_BV(COMxx1));
  1215. # endif
  1216. } else {
  1217. # ifdef BACKLIGHT_PWM_TIMER
  1218. if (!OCRxx) {
  1219. TIMSKx |= _BV(OCIExA);
  1220. TIMSKx |= _BV(TOIEx);
  1221. }
  1222. # else
  1223. // Turn on PWM control of backlight pin
  1224. TCCRxA |= _BV(COMxx1);
  1225. # endif
  1226. }
  1227. // Set the brightness
  1228. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  1229. }
  1230. void backlight_task(void) {}
  1231. # endif // BACKLIGHT_CUSTOM_DRIVER
  1232. # ifdef BACKLIGHT_BREATHING
  1233. # define BREATHING_NO_HALT 0
  1234. # define BREATHING_HALT_OFF 1
  1235. # define BREATHING_HALT_ON 2
  1236. # define BREATHING_STEPS 128
  1237. static uint8_t breathing_period = BREATHING_PERIOD;
  1238. static uint8_t breathing_halt = BREATHING_NO_HALT;
  1239. static uint16_t breathing_counter = 0;
  1240. # ifdef BACKLIGHT_PWM_TIMER
  1241. static bool breathing = false;
  1242. bool is_breathing(void) { return breathing; }
  1243. # define breathing_interrupt_enable() \
  1244. do { \
  1245. breathing = true; \
  1246. } while (0)
  1247. # define breathing_interrupt_disable() \
  1248. do { \
  1249. breathing = false; \
  1250. } while (0)
  1251. # else
  1252. bool is_breathing(void) { return !!(TIMSKx & _BV(TOIEx)); }
  1253. # define breathing_interrupt_enable() \
  1254. do { \
  1255. TIMSKx |= _BV(TOIEx); \
  1256. } while (0)
  1257. # define breathing_interrupt_disable() \
  1258. do { \
  1259. TIMSKx &= ~_BV(TOIEx); \
  1260. } while (0)
  1261. # endif
  1262. # define breathing_min() \
  1263. do { \
  1264. breathing_counter = 0; \
  1265. } while (0)
  1266. # define breathing_max() \
  1267. do { \
  1268. breathing_counter = breathing_period * 244 / 2; \
  1269. } while (0)
  1270. void breathing_enable(void) {
  1271. breathing_counter = 0;
  1272. breathing_halt = BREATHING_NO_HALT;
  1273. breathing_interrupt_enable();
  1274. }
  1275. void breathing_pulse(void) {
  1276. if (get_backlight_level() == 0)
  1277. breathing_min();
  1278. else
  1279. breathing_max();
  1280. breathing_halt = BREATHING_HALT_ON;
  1281. breathing_interrupt_enable();
  1282. }
  1283. void breathing_disable(void) {
  1284. breathing_interrupt_disable();
  1285. // Restore backlight level
  1286. backlight_set(get_backlight_level());
  1287. }
  1288. void breathing_self_disable(void) {
  1289. if (get_backlight_level() == 0)
  1290. breathing_halt = BREATHING_HALT_OFF;
  1291. else
  1292. breathing_halt = BREATHING_HALT_ON;
  1293. }
  1294. void breathing_toggle(void) {
  1295. if (is_breathing())
  1296. breathing_disable();
  1297. else
  1298. breathing_enable();
  1299. }
  1300. void breathing_period_set(uint8_t value) {
  1301. if (!value) value = 1;
  1302. breathing_period = value;
  1303. }
  1304. void breathing_period_default(void) { breathing_period_set(BREATHING_PERIOD); }
  1305. void breathing_period_inc(void) { breathing_period_set(breathing_period + 1); }
  1306. void breathing_period_dec(void) { breathing_period_set(breathing_period - 1); }
  1307. /* To generate breathing curve in python:
  1308. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  1309. */
  1310. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1311. // Use this before the cie_lightness function.
  1312. static inline uint16_t scale_backlight(uint16_t v) { return v / BACKLIGHT_LEVELS * get_backlight_level(); }
  1313. # ifdef BACKLIGHT_PWM_TIMER
  1314. void breathing_task(void)
  1315. # else
  1316. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  1317. * about 244 times per second.
  1318. */
  1319. ISR(TIMERx_OVF_vect)
  1320. # endif
  1321. {
  1322. uint16_t interval = (uint16_t)breathing_period * 244 / BREATHING_STEPS;
  1323. // resetting after one period to prevent ugly reset at overflow.
  1324. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  1325. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  1326. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) {
  1327. breathing_interrupt_disable();
  1328. }
  1329. set_pwm(cie_lightness(scale_backlight((uint16_t)pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  1330. }
  1331. # endif // BACKLIGHT_BREATHING
  1332. __attribute__((weak)) void backlight_init_ports(void) {
  1333. // Setup backlight pin as output and output to on state.
  1334. FOR_EACH_LED(setPinOutput(backlight_pin); backlight_on(backlight_pin);)
  1335. // I could write a wall of text here to explain... but TL;DW
  1336. // Go read the ATmega32u4 datasheet.
  1337. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1338. # ifdef BACKLIGHT_PWM_TIMER
  1339. // TimerX setup, Fast PWM mode count to TOP set in ICRx
  1340. TCCRxA = _BV(WGM11); // = 0b00000010;
  1341. // clock select clk/1
  1342. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1343. # else // hardware PWM
  1344. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1345. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1346. // (i.e. start high, go low when counter matches.)
  1347. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1348. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1349. /*
  1350. 14.8.3:
  1351. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1352. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1353. */
  1354. TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
  1355. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1356. # endif
  1357. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1358. ICRx = TIMER_TOP;
  1359. backlight_init();
  1360. # ifdef BACKLIGHT_BREATHING
  1361. if (is_backlight_breathing()) {
  1362. breathing_enable();
  1363. }
  1364. # endif
  1365. }
  1366. # endif // hardware backlight
  1367. #else // no backlight
  1368. __attribute__((weak)) void backlight_init_ports(void) {}
  1369. __attribute__((weak)) void backlight_set(uint8_t level) {}
  1370. #endif // backlight
  1371. #ifdef HD44780_ENABLED
  1372. # include "hd44780.h"
  1373. #endif
  1374. // Functions for spitting out values
  1375. //
  1376. void send_dword(uint32_t number) { // this might not actually work
  1377. uint16_t word = (number >> 16);
  1378. send_word(word);
  1379. send_word(number & 0xFFFFUL);
  1380. }
  1381. void send_word(uint16_t number) {
  1382. uint8_t byte = number >> 8;
  1383. send_byte(byte);
  1384. send_byte(number & 0xFF);
  1385. }
  1386. void send_byte(uint8_t number) {
  1387. uint8_t nibble = number >> 4;
  1388. send_nibble(nibble);
  1389. send_nibble(number & 0xF);
  1390. }
  1391. void send_nibble(uint8_t number) {
  1392. switch (number) {
  1393. case 0:
  1394. register_code(KC_0);
  1395. unregister_code(KC_0);
  1396. break;
  1397. case 1 ... 9:
  1398. register_code(KC_1 + (number - 1));
  1399. unregister_code(KC_1 + (number - 1));
  1400. break;
  1401. case 0xA ... 0xF:
  1402. register_code(KC_A + (number - 0xA));
  1403. unregister_code(KC_A + (number - 0xA));
  1404. break;
  1405. }
  1406. }
  1407. __attribute__((weak)) uint16_t hex_to_keycode(uint8_t hex) {
  1408. hex = hex & 0xF;
  1409. if (hex == 0x0) {
  1410. return KC_0;
  1411. } else if (hex < 0xA) {
  1412. return KC_1 + (hex - 0x1);
  1413. } else {
  1414. return KC_A + (hex - 0xA);
  1415. }
  1416. }
  1417. void api_send_unicode(uint32_t unicode) {
  1418. #ifdef API_ENABLE
  1419. uint8_t chunk[4];
  1420. dword_to_bytes(unicode, chunk);
  1421. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1422. #endif
  1423. }
  1424. __attribute__((weak)) void led_set_user(uint8_t usb_led) {}
  1425. __attribute__((weak)) void led_set_kb(uint8_t usb_led) { led_set_user(usb_led); }
  1426. __attribute__((weak)) void led_init_ports(void) {}
  1427. __attribute__((weak)) void led_set(uint8_t usb_led) {
  1428. #if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE)
  1429. // Use backlight as Caps Lock indicator
  1430. uint8_t bl_toggle_lvl = 0;
  1431. if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) {
  1432. // Turning Caps Lock ON and backlight is disabled in config
  1433. // Toggling backlight to the brightest level
  1434. bl_toggle_lvl = BACKLIGHT_LEVELS;
  1435. } else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) {
  1436. // Turning Caps Lock OFF and backlight is enabled in config
  1437. // Toggling backlight and restoring config level
  1438. bl_toggle_lvl = backlight_config.level;
  1439. }
  1440. // Set level without modify backlight_config to keep ability to restore state
  1441. backlight_set(bl_toggle_lvl);
  1442. #endif
  1443. led_set_kb(usb_led);
  1444. }
  1445. //------------------------------------------------------------------------------
  1446. // Override these functions in your keymap file to play different tunes on
  1447. // different events such as startup and bootloader jump
  1448. __attribute__((weak)) void startup_user() {}
  1449. __attribute__((weak)) void shutdown_user() {}
  1450. //------------------------------------------------------------------------------