audio_arm.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /* Copyright 2016 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "audio.h"
  17. #include "ch.h"
  18. #include "hal.h"
  19. #include <string.h>
  20. #include "print.h"
  21. #include "keymap.h"
  22. #include "eeconfig.h"
  23. // -----------------------------------------------------------------------------
  24. int voices = 0;
  25. int voice_place = 0;
  26. float frequency = 0;
  27. float frequency_alt = 0;
  28. int volume = 0;
  29. long position = 0;
  30. float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  31. int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
  32. bool sliding = false;
  33. float place = 0;
  34. uint8_t * sample;
  35. uint16_t sample_length = 0;
  36. bool playing_notes = false;
  37. bool playing_note = false;
  38. float note_frequency = 0;
  39. float note_length = 0;
  40. uint8_t note_tempo = TEMPO_DEFAULT;
  41. float note_timbre = TIMBRE_DEFAULT;
  42. uint16_t note_position = 0;
  43. float (* notes_pointer)[][2];
  44. uint16_t notes_count;
  45. bool notes_repeat;
  46. bool note_resting = false;
  47. uint8_t current_note = 0;
  48. uint8_t rest_counter = 0;
  49. #ifdef VIBRATO_ENABLE
  50. float vibrato_counter = 0;
  51. float vibrato_strength = .5;
  52. float vibrato_rate = 0.125;
  53. #endif
  54. float polyphony_rate = 0;
  55. static bool audio_initialized = false;
  56. audio_config_t audio_config;
  57. uint16_t envelope_index = 0;
  58. bool glissando = true;
  59. #ifndef STARTUP_SONG
  60. #define STARTUP_SONG SONG(STARTUP_SOUND)
  61. #endif
  62. float startup_song[][2] = STARTUP_SONG;
  63. static void gpt_cb8(GPTDriver *gptp);
  64. #define DAC_BUFFER_SIZE 720
  65. #ifndef DAC_SAMPLE_MAX
  66. #define DAC_SAMPLE_MAX 65535U
  67. #endif
  68. #define START_CHANNEL_1() gptStart(&GPTD6, &gpt6cfg1); \
  69. gptStartContinuous(&GPTD6, 2U)
  70. #define START_CHANNEL_2() gptStart(&GPTD7, &gpt7cfg1); \
  71. gptStartContinuous(&GPTD7, 2U)
  72. #define STOP_CHANNEL_1() gptStopTimer(&GPTD6)
  73. #define STOP_CHANNEL_2() gptStopTimer(&GPTD7)
  74. #define RESTART_CHANNEL_1() STOP_CHANNEL_1(); \
  75. START_CHANNEL_1()
  76. #define RESTART_CHANNEL_2() STOP_CHANNEL_2(); \
  77. START_CHANNEL_2()
  78. #define UPDATE_CHANNEL_1_FREQ(freq) gpt6cfg1.frequency = freq * DAC_BUFFER_SIZE; \
  79. RESTART_CHANNEL_1()
  80. #define UPDATE_CHANNEL_2_FREQ(freq) gpt7cfg1.frequency = freq * DAC_BUFFER_SIZE; \
  81. RESTART_CHANNEL_2()
  82. #define GET_CHANNEL_1_FREQ gpt6cfg1.frequency
  83. #define GET_CHANNEL_2_FREQ gpt7cfg1.frequency
  84. /*
  85. * GPT6 configuration.
  86. */
  87. // static const GPTConfig gpt6cfg1 = {
  88. // .frequency = 1000000U,
  89. // .callback = NULL,
  90. // .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  91. // .dier = 0U
  92. // };
  93. GPTConfig gpt6cfg1 = {
  94. .frequency = 440U*DAC_BUFFER_SIZE,
  95. .callback = NULL,
  96. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  97. .dier = 0U
  98. };
  99. GPTConfig gpt7cfg1 = {
  100. .frequency = 440U*DAC_BUFFER_SIZE,
  101. .callback = NULL,
  102. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  103. .dier = 0U
  104. };
  105. GPTConfig gpt8cfg1 = {
  106. .frequency = 10,
  107. .callback = gpt_cb8,
  108. .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
  109. .dier = 0U
  110. };
  111. /*
  112. * DAC test buffer (sine wave).
  113. */
  114. // static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
  115. // 2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
  116. // 2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
  117. // 2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
  118. // 3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
  119. // 3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
  120. // 3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
  121. // 3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
  122. // 4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
  123. // 4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
  124. // 3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
  125. // 3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
  126. // 3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
  127. // 3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
  128. // 2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
  129. // 2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
  130. // 2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
  131. // 1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
  132. // 1215, 1182, 1150, 1118, 1086, 1055, 1024, 993, 963, 933, 903, 873,
  133. // 844, 816, 787, 759, 732, 705, 678, 651, 626, 600, 575, 550,
  134. // 526, 503, 479, 457, 434, 413, 391, 371, 350, 331, 312, 293,
  135. // 275, 257, 240, 224, 208, 192, 177, 163, 150, 136, 124, 112,
  136. // 101, 90, 80, 70, 61, 53, 45, 38, 32, 26, 20, 16,
  137. // 12, 8, 5, 3, 2, 1, 0, 1, 2, 3, 5, 8,
  138. // 12, 16, 20, 26, 32, 38, 45, 53, 61, 70, 80, 90,
  139. // 101, 112, 124, 136, 150, 163, 177, 192, 208, 224, 240, 257,
  140. // 275, 293, 312, 331, 350, 371, 391, 413, 434, 457, 479, 503,
  141. // 526, 550, 575, 600, 626, 651, 678, 705, 732, 759, 787, 816,
  142. // 844, 873, 903, 933, 963, 993, 1024, 1055, 1086, 1118, 1150, 1182,
  143. // 1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
  144. // 1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012
  145. // };
  146. // static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
  147. // 12, 8, 5, 3, 2, 1, 0, 1, 2, 3, 5, 8,
  148. // 12, 16, 20, 26, 32, 38, 45, 53, 61, 70, 80, 90,
  149. // 101, 112, 124, 136, 150, 163, 177, 192, 208, 224, 240, 257,
  150. // 275, 293, 312, 331, 350, 371, 391, 413, 434, 457, 479, 503,
  151. // 526, 550, 575, 600, 626, 651, 678, 705, 732, 759, 787, 816,
  152. // 844, 873, 903, 933, 963, 993, 1024, 1055, 1086, 1118, 1150, 1182,
  153. // 1215, 1248, 1281, 1314, 1347, 1381, 1415, 1449, 1483, 1518, 1552, 1587,
  154. // 1622, 1657, 1692, 1727, 1763, 1798, 1834, 1869, 1905, 1940, 1976, 2012,
  155. // 2047, 2082, 2118, 2154, 2189, 2225, 2260, 2296, 2331, 2367, 2402, 2437,
  156. // 2472, 2507, 2542, 2576, 2611, 2645, 2679, 2713, 2747, 2780, 2813, 2846,
  157. // 2879, 2912, 2944, 2976, 3008, 3039, 3070, 3101, 3131, 3161, 3191, 3221,
  158. // 3250, 3278, 3307, 3335, 3362, 3389, 3416, 3443, 3468, 3494, 3519, 3544,
  159. // 3568, 3591, 3615, 3637, 3660, 3681, 3703, 3723, 3744, 3763, 3782, 3801,
  160. // 3819, 3837, 3854, 3870, 3886, 3902, 3917, 3931, 3944, 3958, 3970, 3982,
  161. // 3993, 4004, 4014, 4024, 4033, 4041, 4049, 4056, 4062, 4068, 4074, 4078,
  162. // 4082, 4086, 4089, 4091, 4092, 4093, 4094, 4093, 4092, 4091, 4089, 4086,
  163. // 4082, 4078, 4074, 4068, 4062, 4056, 4049, 4041, 4033, 4024, 4014, 4004,
  164. // 3993, 3982, 3970, 3958, 3944, 3931, 3917, 3902, 3886, 3870, 3854, 3837,
  165. // 3819, 3801, 3782, 3763, 3744, 3723, 3703, 3681, 3660, 3637, 3615, 3591,
  166. // 3568, 3544, 3519, 3494, 3468, 3443, 3416, 3389, 3362, 3335, 3307, 3278,
  167. // 3250, 3221, 3191, 3161, 3131, 3101, 3070, 3039, 3008, 2976, 2944, 2912,
  168. // 2879, 2846, 2813, 2780, 2747, 2713, 2679, 2645, 2611, 2576, 2542, 2507,
  169. // 2472, 2437, 2402, 2367, 2331, 2296, 2260, 2225, 2189, 2154, 2118, 2082,
  170. // 2047, 2012, 1976, 1940, 1905, 1869, 1834, 1798, 1763, 1727, 1692, 1657,
  171. // 1622, 1587, 1552, 1518, 1483, 1449, 1415, 1381, 1347, 1314, 1281, 1248,
  172. // 1215, 1182, 1150, 1118, 1086, 1055, 1024, 993, 963, 933, 903, 873,
  173. // 844, 816, 787, 759, 732, 705, 678, 651, 626, 600, 575, 550,
  174. // 526, 503, 479, 457, 434, 413, 391, 371, 350, 331, 312, 293,
  175. // 275, 257, 240, 224, 208, 192, 177, 163, 150, 136, 124, 112,
  176. // 101, 90, 80, 70, 61, 53, 45, 38, 32, 26, 20, 16
  177. // };
  178. // squarewave
  179. static const dacsample_t dac_buffer[DAC_BUFFER_SIZE] = {
  180. // First half is max, second half is 0
  181. [0 ... DAC_BUFFER_SIZE/2-1] = DAC_SAMPLE_MAX,
  182. [DAC_BUFFER_SIZE/2 ... DAC_BUFFER_SIZE -1] = 0,
  183. };
  184. // squarewave
  185. static const dacsample_t dac_buffer_2[DAC_BUFFER_SIZE] = {
  186. // opposite of dac_buffer above
  187. [0 ... DAC_BUFFER_SIZE/2-1] = 0,
  188. [DAC_BUFFER_SIZE/2 ... DAC_BUFFER_SIZE -1] = DAC_SAMPLE_MAX,
  189. };
  190. /*
  191. * DAC streaming callback.
  192. */
  193. size_t nx = 0, ny = 0, nz = 0;
  194. static void end_cb1(DACDriver *dacp, dacsample_t *buffer, size_t n) {
  195. (void)dacp;
  196. nz++;
  197. if (dac_buffer == buffer) {
  198. nx += n;
  199. }
  200. else {
  201. ny += n;
  202. }
  203. if ((nz % 1000) == 0) {
  204. // palTogglePad(GPIOD, GPIOD_LED3);
  205. }
  206. }
  207. /*
  208. * DAC error callback.
  209. */
  210. static void error_cb1(DACDriver *dacp, dacerror_t err) {
  211. (void)dacp;
  212. (void)err;
  213. chSysHalt("DAC failure");
  214. }
  215. static const DACConfig dac1cfg1 = {
  216. .init = DAC_SAMPLE_MAX,
  217. .datamode = DAC_DHRM_12BIT_RIGHT
  218. };
  219. static const DACConversionGroup dacgrpcfg1 = {
  220. .num_channels = 1U,
  221. .end_cb = end_cb1,
  222. .error_cb = error_cb1,
  223. .trigger = DAC_TRG(0)
  224. };
  225. static const DACConfig dac1cfg2 = {
  226. .init = DAC_SAMPLE_MAX,
  227. .datamode = DAC_DHRM_12BIT_RIGHT
  228. };
  229. static const DACConversionGroup dacgrpcfg2 = {
  230. .num_channels = 1U,
  231. .end_cb = end_cb1,
  232. .error_cb = error_cb1,
  233. .trigger = DAC_TRG(0)
  234. };
  235. void audio_init()
  236. {
  237. if (audio_initialized)
  238. return;
  239. // Check EEPROM
  240. // if (!eeconfig_is_enabled())
  241. // {
  242. // eeconfig_init();
  243. // }
  244. // audio_config.raw = eeconfig_read_audio();
  245. audio_config.enable = true;
  246. /*
  247. * Starting DAC1 driver, setting up the output pin as analog as suggested
  248. * by the Reference Manual.
  249. */
  250. palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
  251. palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
  252. dacStart(&DACD1, &dac1cfg1);
  253. dacStart(&DACD2, &dac1cfg2);
  254. /*
  255. * Starting GPT6/7 driver, it is used for triggering the DAC.
  256. */
  257. START_CHANNEL_1();
  258. START_CHANNEL_2();
  259. /*
  260. * Starting a continuous conversion.
  261. */
  262. dacStartConversion(&DACD1, &dacgrpcfg1, (dacsample_t *)dac_buffer, DAC_BUFFER_SIZE);
  263. dacStartConversion(&DACD2, &dacgrpcfg2, (dacsample_t *)dac_buffer_2, DAC_BUFFER_SIZE);
  264. audio_initialized = true;
  265. if (audio_config.enable) {
  266. PLAY_SONG(startup_song);
  267. }
  268. }
  269. void stop_all_notes()
  270. {
  271. dprintf("audio stop all notes");
  272. if (!audio_initialized) {
  273. audio_init();
  274. }
  275. voices = 0;
  276. gptStopTimer(&GPTD6);
  277. gptStopTimer(&GPTD7);
  278. gptStopTimer(&GPTD8);
  279. playing_notes = false;
  280. playing_note = false;
  281. frequency = 0;
  282. frequency_alt = 0;
  283. volume = 0;
  284. for (uint8_t i = 0; i < 8; i++)
  285. {
  286. frequencies[i] = 0;
  287. volumes[i] = 0;
  288. }
  289. }
  290. void stop_note(float freq)
  291. {
  292. dprintf("audio stop note freq=%d", (int)freq);
  293. if (playing_note) {
  294. if (!audio_initialized) {
  295. audio_init();
  296. }
  297. for (int i = 7; i >= 0; i--) {
  298. if (frequencies[i] == freq) {
  299. frequencies[i] = 0;
  300. volumes[i] = 0;
  301. for (int j = i; (j < 7); j++) {
  302. frequencies[j] = frequencies[j+1];
  303. frequencies[j+1] = 0;
  304. volumes[j] = volumes[j+1];
  305. volumes[j+1] = 0;
  306. }
  307. break;
  308. }
  309. }
  310. voices--;
  311. if (voices < 0)
  312. voices = 0;
  313. if (voice_place >= voices) {
  314. voice_place = 0;
  315. }
  316. if (voices == 0) {
  317. STOP_CHANNEL_1();
  318. STOP_CHANNEL_2();
  319. gptStopTimer(&GPTD8);
  320. frequency = 0;
  321. frequency_alt = 0;
  322. volume = 0;
  323. playing_note = false;
  324. }
  325. }
  326. }
  327. #ifdef VIBRATO_ENABLE
  328. float mod(float a, int b)
  329. {
  330. float r = fmod(a, b);
  331. return r < 0 ? r + b : r;
  332. }
  333. float vibrato(float average_freq) {
  334. #ifdef VIBRATO_STRENGTH_ENABLE
  335. float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
  336. #else
  337. float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
  338. #endif
  339. vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0/average_freq)), VIBRATO_LUT_LENGTH);
  340. return vibrated_freq;
  341. }
  342. #endif
  343. static void gpt_cb8(GPTDriver *gptp) {
  344. float freq;
  345. if (playing_note) {
  346. if (voices > 0) {
  347. float freq_alt = 0;
  348. if (voices > 1) {
  349. if (polyphony_rate == 0) {
  350. if (glissando) {
  351. if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440/frequencies[voices - 2]/12/2)) {
  352. frequency_alt = frequency_alt * pow(2, 440/frequency_alt/12/2);
  353. } else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440/frequencies[voices - 2]/12/2)) {
  354. frequency_alt = frequency_alt * pow(2, -440/frequency_alt/12/2);
  355. } else {
  356. frequency_alt = frequencies[voices - 2];
  357. }
  358. } else {
  359. frequency_alt = frequencies[voices - 2];
  360. }
  361. #ifdef VIBRATO_ENABLE
  362. if (vibrato_strength > 0) {
  363. freq_alt = vibrato(frequency_alt);
  364. } else {
  365. freq_alt = frequency_alt;
  366. }
  367. #else
  368. freq_alt = frequency_alt;
  369. #endif
  370. }
  371. if (envelope_index < 65535) {
  372. envelope_index++;
  373. }
  374. freq_alt = voice_envelope(freq_alt);
  375. if (freq_alt < 30.517578125) {
  376. freq_alt = 30.52;
  377. }
  378. if (GET_CHANNEL_2_FREQ != (uint16_t)freq_alt) {
  379. UPDATE_CHANNEL_2_FREQ(freq_alt);
  380. } else {
  381. RESTART_CHANNEL_2();
  382. }
  383. //note_timbre;
  384. }
  385. if (polyphony_rate > 0) {
  386. if (voices > 1) {
  387. voice_place %= voices;
  388. if (place++ > (frequencies[voice_place] / polyphony_rate)) {
  389. voice_place = (voice_place + 1) % voices;
  390. place = 0.0;
  391. }
  392. }
  393. #ifdef VIBRATO_ENABLE
  394. if (vibrato_strength > 0) {
  395. freq = vibrato(frequencies[voice_place]);
  396. } else {
  397. freq = frequencies[voice_place];
  398. }
  399. #else
  400. freq = frequencies[voice_place];
  401. #endif
  402. } else {
  403. if (glissando) {
  404. if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440/frequencies[voices - 1]/12/2)) {
  405. frequency = frequency * pow(2, 440/frequency/12/2);
  406. } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440/frequencies[voices - 1]/12/2)) {
  407. frequency = frequency * pow(2, -440/frequency/12/2);
  408. } else {
  409. frequency = frequencies[voices - 1];
  410. }
  411. } else {
  412. frequency = frequencies[voices - 1];
  413. }
  414. #ifdef VIBRATO_ENABLE
  415. if (vibrato_strength > 0) {
  416. freq = vibrato(frequency);
  417. } else {
  418. freq = frequency;
  419. }
  420. #else
  421. freq = frequency;
  422. #endif
  423. }
  424. if (envelope_index < 65535) {
  425. envelope_index++;
  426. }
  427. freq = voice_envelope(freq);
  428. if (freq < 30.517578125) {
  429. freq = 30.52;
  430. }
  431. if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
  432. UPDATE_CHANNEL_1_FREQ(freq);
  433. } else {
  434. RESTART_CHANNEL_1();
  435. }
  436. //note_timbre;
  437. }
  438. }
  439. if (playing_notes) {
  440. if (note_frequency > 0) {
  441. #ifdef VIBRATO_ENABLE
  442. if (vibrato_strength > 0) {
  443. freq = vibrato(note_frequency);
  444. } else {
  445. freq = note_frequency;
  446. }
  447. #else
  448. freq = note_frequency;
  449. #endif
  450. if (envelope_index < 65535) {
  451. envelope_index++;
  452. }
  453. freq = voice_envelope(freq);
  454. if (GET_CHANNEL_1_FREQ != (uint16_t)freq) {
  455. UPDATE_CHANNEL_1_FREQ(freq);
  456. UPDATE_CHANNEL_2_FREQ(freq);
  457. }
  458. //note_timbre;
  459. } else {
  460. // gptStopTimer(&GPTD6);
  461. // gptStopTimer(&GPTD7);
  462. }
  463. note_position++;
  464. bool end_of_note = false;
  465. if (GET_CHANNEL_1_FREQ > 0) {
  466. if (!note_resting)
  467. end_of_note = (note_position >= (note_length*8 - 1));
  468. else
  469. end_of_note = (note_position >= (note_length*8));
  470. } else {
  471. end_of_note = (note_position >= (note_length*8));
  472. }
  473. if (end_of_note) {
  474. current_note++;
  475. if (current_note >= notes_count) {
  476. if (notes_repeat) {
  477. current_note = 0;
  478. } else {
  479. STOP_CHANNEL_1();
  480. STOP_CHANNEL_2();
  481. // gptStopTimer(&GPTD8);
  482. playing_notes = false;
  483. return;
  484. }
  485. }
  486. if (!note_resting) {
  487. note_resting = true;
  488. current_note--;
  489. if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
  490. note_frequency = 0;
  491. note_length = 1;
  492. } else {
  493. note_frequency = (*notes_pointer)[current_note][0];
  494. note_length = 1;
  495. }
  496. } else {
  497. note_resting = false;
  498. envelope_index = 0;
  499. note_frequency = (*notes_pointer)[current_note][0];
  500. note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
  501. }
  502. note_position = 0;
  503. }
  504. }
  505. if (!audio_config.enable) {
  506. playing_notes = false;
  507. playing_note = false;
  508. }
  509. }
  510. void play_note(float freq, int vol) {
  511. dprintf("audio play note freq=%d vol=%d", (int)freq, vol);
  512. if (!audio_initialized) {
  513. audio_init();
  514. }
  515. if (audio_config.enable && voices < 8) {
  516. // Cancel notes if notes are playing
  517. if (playing_notes)
  518. stop_all_notes();
  519. playing_note = true;
  520. envelope_index = 0;
  521. if (freq > 0) {
  522. frequencies[voices] = freq;
  523. volumes[voices] = vol;
  524. voices++;
  525. }
  526. gptStart(&GPTD8, &gpt8cfg1);
  527. gptStartContinuous(&GPTD8, 2U);
  528. RESTART_CHANNEL_1();
  529. RESTART_CHANNEL_2();
  530. }
  531. }
  532. void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat)
  533. {
  534. if (!audio_initialized) {
  535. audio_init();
  536. }
  537. if (audio_config.enable) {
  538. // Cancel note if a note is playing
  539. if (playing_note)
  540. stop_all_notes();
  541. playing_notes = true;
  542. notes_pointer = np;
  543. notes_count = n_count;
  544. notes_repeat = n_repeat;
  545. place = 0;
  546. current_note = 0;
  547. note_frequency = (*notes_pointer)[current_note][0];
  548. note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
  549. note_position = 0;
  550. gptStart(&GPTD8, &gpt8cfg1);
  551. gptStartContinuous(&GPTD8, 2U);
  552. RESTART_CHANNEL_1();
  553. RESTART_CHANNEL_2();
  554. }
  555. }
  556. bool is_playing_notes(void) {
  557. return playing_notes;
  558. }
  559. bool is_audio_on(void) {
  560. return (audio_config.enable != 0);
  561. }
  562. void audio_toggle(void) {
  563. audio_config.enable ^= 1;
  564. eeconfig_update_audio(audio_config.raw);
  565. if (audio_config.enable)
  566. audio_on_user();
  567. }
  568. void audio_on(void) {
  569. audio_config.enable = 1;
  570. eeconfig_update_audio(audio_config.raw);
  571. audio_on_user();
  572. }
  573. void audio_off(void) {
  574. audio_config.enable = 0;
  575. eeconfig_update_audio(audio_config.raw);
  576. }
  577. #ifdef VIBRATO_ENABLE
  578. // Vibrato rate functions
  579. void set_vibrato_rate(float rate) {
  580. vibrato_rate = rate;
  581. }
  582. void increase_vibrato_rate(float change) {
  583. vibrato_rate *= change;
  584. }
  585. void decrease_vibrato_rate(float change) {
  586. vibrato_rate /= change;
  587. }
  588. #ifdef VIBRATO_STRENGTH_ENABLE
  589. void set_vibrato_strength(float strength) {
  590. vibrato_strength = strength;
  591. }
  592. void increase_vibrato_strength(float change) {
  593. vibrato_strength *= change;
  594. }
  595. void decrease_vibrato_strength(float change) {
  596. vibrato_strength /= change;
  597. }
  598. #endif /* VIBRATO_STRENGTH_ENABLE */
  599. #endif /* VIBRATO_ENABLE */
  600. // Polyphony functions
  601. void set_polyphony_rate(float rate) {
  602. polyphony_rate = rate;
  603. }
  604. void enable_polyphony() {
  605. polyphony_rate = 5;
  606. }
  607. void disable_polyphony() {
  608. polyphony_rate = 0;
  609. }
  610. void increase_polyphony_rate(float change) {
  611. polyphony_rate *= change;
  612. }
  613. void decrease_polyphony_rate(float change) {
  614. polyphony_rate /= change;
  615. }
  616. // Timbre function
  617. void set_timbre(float timbre) {
  618. note_timbre = timbre;
  619. }
  620. // Tempo functions
  621. void set_tempo(uint8_t tempo) {
  622. note_tempo = tempo;
  623. }
  624. void decrease_tempo(uint8_t tempo_change) {
  625. note_tempo += tempo_change;
  626. }
  627. void increase_tempo(uint8_t tempo_change) {
  628. if (note_tempo - tempo_change < 10) {
  629. note_tempo = 10;
  630. } else {
  631. note_tempo -= tempo_change;
  632. }
  633. }