quantum.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850
  1. #include "quantum.h"
  2. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  3. switch (code) {
  4. case QK_MODS ... QK_MODS_MAX:
  5. break;
  6. default:
  7. return;
  8. }
  9. if (code & QK_LCTL)
  10. f(KC_LCTL);
  11. if (code & QK_LSFT)
  12. f(KC_LSFT);
  13. if (code & QK_LALT)
  14. f(KC_LALT);
  15. if (code & QK_LGUI)
  16. f(KC_LGUI);
  17. if (code & QK_RCTL)
  18. f(KC_RCTL);
  19. if (code & QK_RSFT)
  20. f(KC_RSFT);
  21. if (code & QK_RALT)
  22. f(KC_RALT);
  23. if (code & QK_RGUI)
  24. f(KC_RGUI);
  25. }
  26. void register_code16 (uint16_t code) {
  27. do_code16 (code, register_code);
  28. register_code (code);
  29. }
  30. void unregister_code16 (uint16_t code) {
  31. unregister_code (code);
  32. do_code16 (code, unregister_code);
  33. }
  34. __attribute__ ((weak))
  35. bool process_action_kb(keyrecord_t *record) {
  36. return true;
  37. }
  38. __attribute__ ((weak))
  39. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  40. return process_record_user(keycode, record);
  41. }
  42. __attribute__ ((weak))
  43. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  44. return true;
  45. }
  46. void reset_keyboard(void) {
  47. clear_keyboard();
  48. #ifdef AUDIO_ENABLE
  49. stop_all_notes();
  50. shutdown_user();
  51. #endif
  52. wait_ms(250);
  53. #ifdef CATERINA_BOOTLOADER
  54. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  55. #endif
  56. bootloader_jump();
  57. }
  58. // Shift / paren setup
  59. #ifndef LSPO_KEY
  60. #define LSPO_KEY KC_9
  61. #endif
  62. #ifndef RSPC_KEY
  63. #define RSPC_KEY KC_0
  64. #endif
  65. static bool shift_interrupted[2] = {0, 0};
  66. bool process_record_quantum(keyrecord_t *record) {
  67. /* This gets the keycode from the key pressed */
  68. keypos_t key = record->event.key;
  69. uint16_t keycode;
  70. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  71. /* TODO: Use store_or_get_action() or a similar function. */
  72. if (!disable_action_cache) {
  73. uint8_t layer;
  74. if (record->event.pressed) {
  75. layer = layer_switch_get_layer(key);
  76. update_source_layers_cache(key, layer);
  77. } else {
  78. layer = read_source_layers_cache(key);
  79. }
  80. keycode = keymap_key_to_keycode(layer, key);
  81. } else
  82. #endif
  83. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  84. // This is how you use actions here
  85. // if (keycode == KC_LEAD) {
  86. // action_t action;
  87. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  88. // process_action(record, action);
  89. // return false;
  90. // }
  91. if (!(
  92. process_record_kb(keycode, record) &&
  93. #ifdef MIDI_ENABLE
  94. process_midi(keycode, record) &&
  95. #endif
  96. #ifdef AUDIO_ENABLE
  97. process_music(keycode, record) &&
  98. #endif
  99. #ifdef TAP_DANCE_ENABLE
  100. process_tap_dance(keycode, record) &&
  101. #endif
  102. #ifndef DISABLE_LEADER
  103. process_leader(keycode, record) &&
  104. #endif
  105. #ifndef DISABLE_CHORDING
  106. process_chording(keycode, record) &&
  107. #endif
  108. #ifdef UNICODE_ENABLE
  109. process_unicode(keycode, record) &&
  110. #endif
  111. #ifdef UCIS_ENABLE
  112. process_ucis(keycode, record) &&
  113. #endif
  114. true)) {
  115. return false;
  116. }
  117. // Shift / paren setup
  118. switch(keycode) {
  119. case RESET:
  120. if (record->event.pressed) {
  121. reset_keyboard();
  122. }
  123. return false;
  124. break;
  125. case DEBUG:
  126. if (record->event.pressed) {
  127. print("\nDEBUG: enabled.\n");
  128. debug_enable = true;
  129. }
  130. return false;
  131. break;
  132. #ifdef RGBLIGHT_ENABLE
  133. case RGB_TOG:
  134. if (record->event.pressed) {
  135. rgblight_toggle();
  136. }
  137. return false;
  138. break;
  139. case RGB_MOD:
  140. if (record->event.pressed) {
  141. rgblight_step();
  142. }
  143. return false;
  144. break;
  145. case RGB_HUI:
  146. if (record->event.pressed) {
  147. rgblight_increase_hue();
  148. }
  149. return false;
  150. break;
  151. case RGB_HUD:
  152. if (record->event.pressed) {
  153. rgblight_decrease_hue();
  154. }
  155. return false;
  156. break;
  157. case RGB_SAI:
  158. if (record->event.pressed) {
  159. rgblight_increase_sat();
  160. }
  161. return false;
  162. break;
  163. case RGB_SAD:
  164. if (record->event.pressed) {
  165. rgblight_decrease_sat();
  166. }
  167. return false;
  168. break;
  169. case RGB_VAI:
  170. if (record->event.pressed) {
  171. rgblight_increase_val();
  172. }
  173. return false;
  174. break;
  175. case RGB_VAD:
  176. if (record->event.pressed) {
  177. rgblight_decrease_val();
  178. }
  179. return false;
  180. break;
  181. #endif
  182. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  183. if (record->event.pressed) {
  184. // MAGIC actions (BOOTMAGIC without the boot)
  185. if (!eeconfig_is_enabled()) {
  186. eeconfig_init();
  187. }
  188. /* keymap config */
  189. keymap_config.raw = eeconfig_read_keymap();
  190. switch (keycode)
  191. {
  192. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  193. keymap_config.swap_control_capslock = true;
  194. break;
  195. case MAGIC_CAPSLOCK_TO_CONTROL:
  196. keymap_config.capslock_to_control = true;
  197. break;
  198. case MAGIC_SWAP_LALT_LGUI:
  199. keymap_config.swap_lalt_lgui = true;
  200. break;
  201. case MAGIC_SWAP_RALT_RGUI:
  202. keymap_config.swap_ralt_rgui = true;
  203. break;
  204. case MAGIC_NO_GUI:
  205. keymap_config.no_gui = true;
  206. break;
  207. case MAGIC_SWAP_GRAVE_ESC:
  208. keymap_config.swap_grave_esc = true;
  209. break;
  210. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  211. keymap_config.swap_backslash_backspace = true;
  212. break;
  213. case MAGIC_HOST_NKRO:
  214. keymap_config.nkro = true;
  215. break;
  216. case MAGIC_SWAP_ALT_GUI:
  217. keymap_config.swap_lalt_lgui = true;
  218. keymap_config.swap_ralt_rgui = true;
  219. break;
  220. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  221. keymap_config.swap_control_capslock = false;
  222. break;
  223. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  224. keymap_config.capslock_to_control = false;
  225. break;
  226. case MAGIC_UNSWAP_LALT_LGUI:
  227. keymap_config.swap_lalt_lgui = false;
  228. break;
  229. case MAGIC_UNSWAP_RALT_RGUI:
  230. keymap_config.swap_ralt_rgui = false;
  231. break;
  232. case MAGIC_UNNO_GUI:
  233. keymap_config.no_gui = false;
  234. break;
  235. case MAGIC_UNSWAP_GRAVE_ESC:
  236. keymap_config.swap_grave_esc = false;
  237. break;
  238. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  239. keymap_config.swap_backslash_backspace = false;
  240. break;
  241. case MAGIC_UNHOST_NKRO:
  242. keymap_config.nkro = false;
  243. break;
  244. case MAGIC_UNSWAP_ALT_GUI:
  245. keymap_config.swap_lalt_lgui = false;
  246. keymap_config.swap_ralt_rgui = false;
  247. break;
  248. case MAGIC_TOGGLE_NKRO:
  249. keymap_config.nkro = !keymap_config.nkro;
  250. break;
  251. default:
  252. break;
  253. }
  254. eeconfig_update_keymap(keymap_config.raw);
  255. clear_keyboard(); // clear to prevent stuck keys
  256. return false;
  257. }
  258. break;
  259. case KC_LSPO: {
  260. if (record->event.pressed) {
  261. shift_interrupted[0] = false;
  262. register_mods(MOD_BIT(KC_LSFT));
  263. }
  264. else {
  265. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  266. if (get_mods() & MOD_BIT(KC_RSFT)) {
  267. shift_interrupted[0] = true;
  268. shift_interrupted[1] = true;
  269. }
  270. #endif
  271. if (!shift_interrupted[0]) {
  272. register_code(LSPO_KEY);
  273. unregister_code(LSPO_KEY);
  274. }
  275. unregister_mods(MOD_BIT(KC_LSFT));
  276. }
  277. return false;
  278. // break;
  279. }
  280. case KC_RSPC: {
  281. if (record->event.pressed) {
  282. shift_interrupted[1] = false;
  283. register_mods(MOD_BIT(KC_RSFT));
  284. }
  285. else {
  286. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  287. if (get_mods() & MOD_BIT(KC_LSFT)) {
  288. shift_interrupted[0] = true;
  289. shift_interrupted[1] = true;
  290. }
  291. #endif
  292. if (!shift_interrupted[1]) {
  293. register_code(RSPC_KEY);
  294. unregister_code(RSPC_KEY);
  295. }
  296. unregister_mods(MOD_BIT(KC_RSFT));
  297. }
  298. return false;
  299. // break;
  300. }
  301. default: {
  302. shift_interrupted[0] = true;
  303. shift_interrupted[1] = true;
  304. break;
  305. }
  306. }
  307. return process_action_kb(record);
  308. }
  309. const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
  310. 0, 0, 0, 0, 0, 0, 0, 0,
  311. 0, 0, 0, 0, 0, 0, 0, 0,
  312. 0, 0, 0, 0, 0, 0, 0, 0,
  313. 0, 0, 0, 0, 0, 0, 0, 0,
  314. 0, 1, 1, 1, 1, 1, 1, 0,
  315. 1, 1, 1, 1, 0, 0, 0, 0,
  316. 0, 0, 0, 0, 0, 0, 0, 0,
  317. 0, 0, 1, 0, 1, 0, 1, 1,
  318. 1, 1, 1, 1, 1, 1, 1, 1,
  319. 1, 1, 1, 1, 1, 1, 1, 1,
  320. 1, 1, 1, 1, 1, 1, 1, 1,
  321. 1, 1, 1, 0, 0, 0, 1, 1,
  322. 0, 0, 0, 0, 0, 0, 0, 0,
  323. 0, 0, 0, 0, 0, 0, 0, 0,
  324. 0, 0, 0, 0, 0, 0, 0, 0,
  325. 0, 0, 0, 1, 1, 1, 1, 0
  326. };
  327. const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
  328. 0, 0, 0, 0, 0, 0, 0, 0,
  329. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  330. 0, 0, 0, 0, 0, 0, 0, 0,
  331. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  332. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  333. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  334. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  335. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  336. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  337. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  338. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  339. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  340. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  341. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  342. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  343. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  344. };
  345. /* for users whose OSes are set to Colemak */
  346. #if 0
  347. #include "keymap_colemak.h"
  348. const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
  349. 0, 0, 0, 0, 0, 0, 0, 0,
  350. 0, 0, 0, 0, 0, 0, 0, 0,
  351. 0, 0, 0, 0, 0, 0, 0, 0,
  352. 0, 0, 0, 0, 0, 0, 0, 0,
  353. 0, 1, 1, 1, 1, 1, 1, 0,
  354. 1, 1, 1, 1, 0, 0, 0, 0,
  355. 0, 0, 0, 0, 0, 0, 0, 0,
  356. 0, 0, 1, 0, 1, 0, 1, 1,
  357. 1, 1, 1, 1, 1, 1, 1, 1,
  358. 1, 1, 1, 1, 1, 1, 1, 1,
  359. 1, 1, 1, 1, 1, 1, 1, 1,
  360. 1, 1, 1, 0, 0, 0, 1, 1,
  361. 0, 0, 0, 0, 0, 0, 0, 0,
  362. 0, 0, 0, 0, 0, 0, 0, 0,
  363. 0, 0, 0, 0, 0, 0, 0, 0,
  364. 0, 0, 0, 1, 1, 1, 1, 0
  365. };
  366. const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
  367. 0, 0, 0, 0, 0, 0, 0, 0,
  368. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  369. 0, 0, 0, 0, 0, 0, 0, 0,
  370. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  371. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  372. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  373. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  374. KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  375. KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  376. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  377. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  378. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  379. KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  380. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  381. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  382. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  383. };
  384. #endif
  385. void send_string(const char *str) {
  386. while (1) {
  387. uint8_t keycode;
  388. uint8_t ascii_code = pgm_read_byte(str);
  389. if (!ascii_code) break;
  390. keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
  391. if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
  392. register_code(KC_LSFT);
  393. register_code(keycode);
  394. unregister_code(keycode);
  395. unregister_code(KC_LSFT);
  396. }
  397. else {
  398. register_code(keycode);
  399. unregister_code(keycode);
  400. }
  401. ++str;
  402. }
  403. }
  404. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  405. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  406. layer_on(layer3);
  407. } else {
  408. layer_off(layer3);
  409. }
  410. }
  411. void tap_random_base64(void) {
  412. #if defined(__AVR_ATmega32U4__)
  413. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  414. #else
  415. uint8_t key = rand() % 64;
  416. #endif
  417. switch (key) {
  418. case 0 ... 25:
  419. register_code(KC_LSFT);
  420. register_code(key + KC_A);
  421. unregister_code(key + KC_A);
  422. unregister_code(KC_LSFT);
  423. break;
  424. case 26 ... 51:
  425. register_code(key - 26 + KC_A);
  426. unregister_code(key - 26 + KC_A);
  427. break;
  428. case 52:
  429. register_code(KC_0);
  430. unregister_code(KC_0);
  431. break;
  432. case 53 ... 61:
  433. register_code(key - 53 + KC_1);
  434. unregister_code(key - 53 + KC_1);
  435. break;
  436. case 62:
  437. register_code(KC_LSFT);
  438. register_code(KC_EQL);
  439. unregister_code(KC_EQL);
  440. unregister_code(KC_LSFT);
  441. break;
  442. case 63:
  443. register_code(KC_SLSH);
  444. unregister_code(KC_SLSH);
  445. break;
  446. }
  447. }
  448. void matrix_init_quantum() {
  449. #ifdef BACKLIGHT_ENABLE
  450. backlight_init_ports();
  451. #endif
  452. matrix_init_kb();
  453. }
  454. void matrix_scan_quantum() {
  455. #ifdef AUDIO_ENABLE
  456. matrix_scan_music();
  457. #endif
  458. #ifdef TAP_DANCE_ENABLE
  459. matrix_scan_tap_dance();
  460. #endif
  461. matrix_scan_kb();
  462. }
  463. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  464. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  465. #if BACKLIGHT_PIN == B7
  466. # define COM1x1 COM1C1
  467. # define OCR1x OCR1C
  468. #elif BACKLIGHT_PIN == B6
  469. # define COM1x1 COM1B1
  470. # define OCR1x OCR1B
  471. #elif BACKLIGHT_PIN == B5
  472. # define COM1x1 COM1A1
  473. # define OCR1x OCR1A
  474. #else
  475. # error "Backlight pin not supported - use B5, B6, or B7"
  476. #endif
  477. __attribute__ ((weak))
  478. void backlight_init_ports(void)
  479. {
  480. // Setup backlight pin as output and output low.
  481. // DDRx |= n
  482. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  483. // PORTx &= ~n
  484. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  485. // Use full 16-bit resolution.
  486. ICR1 = 0xFFFF;
  487. // I could write a wall of text here to explain... but TL;DW
  488. // Go read the ATmega32u4 datasheet.
  489. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  490. // Pin PB7 = OCR1C (Timer 1, Channel C)
  491. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  492. // (i.e. start high, go low when counter matches.)
  493. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  494. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  495. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  496. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  497. backlight_init();
  498. #ifdef BACKLIGHT_BREATHING
  499. breathing_defaults();
  500. #endif
  501. }
  502. __attribute__ ((weak))
  503. void backlight_set(uint8_t level)
  504. {
  505. // Prevent backlight blink on lowest level
  506. // PORTx &= ~n
  507. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  508. if ( level == 0 ) {
  509. // Turn off PWM control on backlight pin, revert to output low.
  510. TCCR1A &= ~(_BV(COM1x1));
  511. OCR1x = 0x0;
  512. } else if ( level == BACKLIGHT_LEVELS ) {
  513. // Turn on PWM control of backlight pin
  514. TCCR1A |= _BV(COM1x1);
  515. // Set the brightness
  516. OCR1x = 0xFFFF;
  517. } else {
  518. // Turn on PWM control of backlight pin
  519. TCCR1A |= _BV(COM1x1);
  520. // Set the brightness
  521. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  522. }
  523. #ifdef BACKLIGHT_BREATHING
  524. breathing_intensity_default();
  525. #endif
  526. }
  527. #ifdef BACKLIGHT_BREATHING
  528. #define BREATHING_NO_HALT 0
  529. #define BREATHING_HALT_OFF 1
  530. #define BREATHING_HALT_ON 2
  531. static uint8_t breath_intensity;
  532. static uint8_t breath_speed;
  533. static uint16_t breathing_index;
  534. static uint8_t breathing_halt;
  535. void breathing_enable(void)
  536. {
  537. if (get_backlight_level() == 0)
  538. {
  539. breathing_index = 0;
  540. }
  541. else
  542. {
  543. // Set breathing_index to be at the midpoint (brightest point)
  544. breathing_index = 0x20 << breath_speed;
  545. }
  546. breathing_halt = BREATHING_NO_HALT;
  547. // Enable breathing interrupt
  548. TIMSK1 |= _BV(OCIE1A);
  549. }
  550. void breathing_pulse(void)
  551. {
  552. if (get_backlight_level() == 0)
  553. {
  554. breathing_index = 0;
  555. }
  556. else
  557. {
  558. // Set breathing_index to be at the midpoint + 1 (brightest point)
  559. breathing_index = 0x21 << breath_speed;
  560. }
  561. breathing_halt = BREATHING_HALT_ON;
  562. // Enable breathing interrupt
  563. TIMSK1 |= _BV(OCIE1A);
  564. }
  565. void breathing_disable(void)
  566. {
  567. // Disable breathing interrupt
  568. TIMSK1 &= ~_BV(OCIE1A);
  569. backlight_set(get_backlight_level());
  570. }
  571. void breathing_self_disable(void)
  572. {
  573. if (get_backlight_level() == 0)
  574. {
  575. breathing_halt = BREATHING_HALT_OFF;
  576. }
  577. else
  578. {
  579. breathing_halt = BREATHING_HALT_ON;
  580. }
  581. //backlight_set(get_backlight_level());
  582. }
  583. void breathing_toggle(void)
  584. {
  585. if (!is_breathing())
  586. {
  587. if (get_backlight_level() == 0)
  588. {
  589. breathing_index = 0;
  590. }
  591. else
  592. {
  593. // Set breathing_index to be at the midpoint + 1 (brightest point)
  594. breathing_index = 0x21 << breath_speed;
  595. }
  596. breathing_halt = BREATHING_NO_HALT;
  597. }
  598. // Toggle breathing interrupt
  599. TIMSK1 ^= _BV(OCIE1A);
  600. // Restore backlight level
  601. if (!is_breathing())
  602. {
  603. backlight_set(get_backlight_level());
  604. }
  605. }
  606. bool is_breathing(void)
  607. {
  608. return (TIMSK1 && _BV(OCIE1A));
  609. }
  610. void breathing_intensity_default(void)
  611. {
  612. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  613. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  614. }
  615. void breathing_intensity_set(uint8_t value)
  616. {
  617. breath_intensity = value;
  618. }
  619. void breathing_speed_default(void)
  620. {
  621. breath_speed = 4;
  622. }
  623. void breathing_speed_set(uint8_t value)
  624. {
  625. bool is_breathing_now = is_breathing();
  626. uint8_t old_breath_speed = breath_speed;
  627. if (is_breathing_now)
  628. {
  629. // Disable breathing interrupt
  630. TIMSK1 &= ~_BV(OCIE1A);
  631. }
  632. breath_speed = value;
  633. if (is_breathing_now)
  634. {
  635. // Adjust index to account for new speed
  636. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  637. // Enable breathing interrupt
  638. TIMSK1 |= _BV(OCIE1A);
  639. }
  640. }
  641. void breathing_speed_inc(uint8_t value)
  642. {
  643. if ((uint16_t)(breath_speed - value) > 10 )
  644. {
  645. breathing_speed_set(0);
  646. }
  647. else
  648. {
  649. breathing_speed_set(breath_speed - value);
  650. }
  651. }
  652. void breathing_speed_dec(uint8_t value)
  653. {
  654. if ((uint16_t)(breath_speed + value) > 10 )
  655. {
  656. breathing_speed_set(10);
  657. }
  658. else
  659. {
  660. breathing_speed_set(breath_speed + value);
  661. }
  662. }
  663. void breathing_defaults(void)
  664. {
  665. breathing_intensity_default();
  666. breathing_speed_default();
  667. breathing_halt = BREATHING_NO_HALT;
  668. }
  669. /* Breathing Sleep LED brighness(PWM On period) table
  670. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  671. *
  672. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  673. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  674. */
  675. static const uint8_t breathing_table[64] PROGMEM = {
  676. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  677. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  678. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  679. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  680. };
  681. ISR(TIMER1_COMPA_vect)
  682. {
  683. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  684. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  685. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  686. {
  687. // Disable breathing interrupt
  688. TIMSK1 &= ~_BV(OCIE1A);
  689. }
  690. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  691. }
  692. #endif // breathing
  693. #else // backlight
  694. __attribute__ ((weak))
  695. void backlight_init_ports(void)
  696. {
  697. }
  698. __attribute__ ((weak))
  699. void backlight_set(uint8_t level)
  700. {
  701. }
  702. #endif // backlight
  703. __attribute__ ((weak))
  704. void led_set_user(uint8_t usb_led) {
  705. }
  706. __attribute__ ((weak))
  707. void led_set_kb(uint8_t usb_led) {
  708. led_set_user(usb_led);
  709. }
  710. __attribute__ ((weak))
  711. void led_init_ports(void)
  712. {
  713. }
  714. __attribute__ ((weak))
  715. void led_set(uint8_t usb_led)
  716. {
  717. // Example LED Code
  718. //
  719. // // Using PE6 Caps Lock LED
  720. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  721. // {
  722. // // Output high.
  723. // DDRE |= (1<<6);
  724. // PORTE |= (1<<6);
  725. // }
  726. // else
  727. // {
  728. // // Output low.
  729. // DDRE &= ~(1<<6);
  730. // PORTE &= ~(1<<6);
  731. // }
  732. led_set_kb(usb_led);
  733. }
  734. //------------------------------------------------------------------------------
  735. // Override these functions in your keymap file to play different tunes on
  736. // different events such as startup and bootloader jump
  737. __attribute__ ((weak))
  738. void startup_user() {}
  739. __attribute__ ((weak))
  740. void shutdown_user() {}
  741. //------------------------------------------------------------------------------