ssd1306_sh1106.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777
  1. /*
  2. Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include "i2c_master.h"
  15. #include "oled_driver.h"
  16. #include OLED_FONT_H
  17. #include "timer.h"
  18. #include "print.h"
  19. #include <string.h>
  20. #include "progmem.h"
  21. #include "keyboard.h"
  22. // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
  23. // for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
  24. // Fundamental Commands
  25. #define CONTRAST 0x81
  26. #define DISPLAY_ALL_ON 0xA5
  27. #define DISPLAY_ALL_ON_RESUME 0xA4
  28. #define NORMAL_DISPLAY 0xA6
  29. #define INVERT_DISPLAY 0xA7
  30. #define DISPLAY_ON 0xAF
  31. #define DISPLAY_OFF 0xAE
  32. #define NOP 0xE3
  33. // Scrolling Commands
  34. #define ACTIVATE_SCROLL 0x2F
  35. #define DEACTIVATE_SCROLL 0x2E
  36. #define SCROLL_RIGHT 0x26
  37. #define SCROLL_LEFT 0x27
  38. #define SCROLL_RIGHT_UP 0x29
  39. #define SCROLL_LEFT_UP 0x2A
  40. // Addressing Setting Commands
  41. #define MEMORY_MODE 0x20
  42. #define COLUMN_ADDR 0x21
  43. #define PAGE_ADDR 0x22
  44. #define PAM_SETCOLUMN_LSB 0x00
  45. #define PAM_SETCOLUMN_MSB 0x10
  46. #define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
  47. // Hardware Configuration Commands
  48. #define DISPLAY_START_LINE 0x40
  49. #define SEGMENT_REMAP 0xA0
  50. #define SEGMENT_REMAP_INV 0xA1
  51. #define MULTIPLEX_RATIO 0xA8
  52. #define COM_SCAN_INC 0xC0
  53. #define COM_SCAN_DEC 0xC8
  54. #define DISPLAY_OFFSET 0xD3
  55. #define COM_PINS 0xDA
  56. #define COM_PINS_SEQ 0x02
  57. #define COM_PINS_ALT 0x12
  58. #define COM_PINS_SEQ_LR 0x22
  59. #define COM_PINS_ALT_LR 0x32
  60. // Timing & Driving Commands
  61. #define DISPLAY_CLOCK 0xD5
  62. #define PRE_CHARGE_PERIOD 0xD9
  63. #define VCOM_DETECT 0xDB
  64. // Advance Graphic Commands
  65. #define FADE_BLINK 0x23
  66. #define ENABLE_FADE 0x20
  67. #define ENABLE_BLINK 0x30
  68. // Charge Pump Commands
  69. #define CHARGE_PUMP 0x8D
  70. // Misc defines
  71. #ifndef OLED_BLOCK_COUNT
  72. # define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
  73. #endif
  74. #ifndef OLED_BLOCK_SIZE
  75. # define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
  76. #endif
  77. #define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
  78. // i2c defines
  79. #define I2C_CMD 0x00
  80. #define I2C_DATA 0x40
  81. #if defined(__AVR__)
  82. # define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
  83. #else // defined(__AVR__)
  84. # define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
  85. #endif // defined(__AVR__)
  86. #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
  87. #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT)
  88. #define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
  89. // Display buffer's is the same as the OLED memory layout
  90. // this is so we don't end up with rounding errors with
  91. // parts of the display unusable or don't get cleared correctly
  92. // and also allows for drawing & inverting
  93. uint8_t oled_buffer[OLED_MATRIX_SIZE];
  94. uint8_t * oled_cursor;
  95. OLED_BLOCK_TYPE oled_dirty = 0;
  96. bool oled_initialized = false;
  97. bool oled_active = false;
  98. bool oled_scrolling = false;
  99. bool oled_inverted = false;
  100. uint8_t oled_brightness = OLED_BRIGHTNESS;
  101. oled_rotation_t oled_rotation = 0;
  102. uint8_t oled_rotation_width = 0;
  103. uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values
  104. uint8_t oled_scroll_start = 0;
  105. uint8_t oled_scroll_end = 7;
  106. #if OLED_TIMEOUT > 0
  107. uint32_t oled_timeout;
  108. #endif
  109. #if OLED_SCROLL_TIMEOUT > 0
  110. uint32_t oled_scroll_timeout;
  111. #endif
  112. #if OLED_UPDATE_INTERVAL > 0
  113. uint16_t oled_update_timeout;
  114. #endif
  115. // Internal variables to reduce math instructions
  116. #if defined(__AVR__)
  117. // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
  118. // probably should move this into i2c_master...
  119. static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
  120. i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
  121. for (uint16_t i = 0; i < length && status >= 0; i++) {
  122. status = i2c_write(pgm_read_byte((const char *)data++), timeout);
  123. if (status) break;
  124. }
  125. i2c_stop();
  126. return status;
  127. }
  128. #endif
  129. // Flips the rendering bits for a character at the current cursor position
  130. static void InvertCharacter(uint8_t *cursor) {
  131. const uint8_t *end = cursor + OLED_FONT_WIDTH;
  132. while (cursor < end) {
  133. *cursor = ~(*cursor);
  134. cursor++;
  135. }
  136. }
  137. bool oled_init(oled_rotation_t rotation) {
  138. #if defined(USE_I2C) && defined(SPLIT_KEYBOARD)
  139. if (!is_keyboard_master()) {
  140. return true;
  141. }
  142. #endif
  143. oled_rotation = oled_init_user(rotation);
  144. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  145. oled_rotation_width = OLED_DISPLAY_WIDTH;
  146. } else {
  147. oled_rotation_width = OLED_DISPLAY_HEIGHT;
  148. }
  149. i2c_init();
  150. static const uint8_t PROGMEM display_setup1[] = {
  151. I2C_CMD,
  152. DISPLAY_OFF,
  153. DISPLAY_CLOCK,
  154. 0x80,
  155. MULTIPLEX_RATIO,
  156. OLED_DISPLAY_HEIGHT - 1,
  157. DISPLAY_OFFSET,
  158. 0x00,
  159. DISPLAY_START_LINE | 0x00,
  160. CHARGE_PUMP,
  161. 0x14,
  162. #if (OLED_IC != OLED_IC_SH1106)
  163. // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
  164. MEMORY_MODE,
  165. 0x00, // Horizontal addressing mode
  166. #endif
  167. };
  168. if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
  169. print("oled_init cmd set 1 failed\n");
  170. return false;
  171. }
  172. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
  173. static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
  174. if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
  175. print("oled_init cmd normal rotation failed\n");
  176. return false;
  177. }
  178. } else {
  179. static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
  180. if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
  181. print("display_flipped failed\n");
  182. return false;
  183. }
  184. }
  185. static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
  186. if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
  187. print("display_setup2 failed\n");
  188. return false;
  189. }
  190. #if OLED_TIMEOUT > 0
  191. oled_timeout = timer_read32() + OLED_TIMEOUT;
  192. #endif
  193. #if OLED_SCROLL_TIMEOUT > 0
  194. oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
  195. #endif
  196. oled_clear();
  197. oled_initialized = true;
  198. oled_active = true;
  199. oled_scrolling = false;
  200. return true;
  201. }
  202. __attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
  203. void oled_clear(void) {
  204. memset(oled_buffer, 0, sizeof(oled_buffer));
  205. oled_cursor = &oled_buffer[0];
  206. oled_dirty = OLED_ALL_BLOCKS_MASK;
  207. }
  208. static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
  209. // Calculate commands to set memory addressing bounds.
  210. uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
  211. uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
  212. #if (OLED_IC == OLED_IC_SH1106)
  213. // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
  214. // Column value must be split into high and low nybble and sent as two commands.
  215. cmd_array[0] = PAM_PAGE_ADDR | start_page;
  216. cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
  217. cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
  218. cmd_array[3] = NOP;
  219. cmd_array[4] = NOP;
  220. cmd_array[5] = NOP;
  221. #else
  222. // Commands for use in Horizontal Addressing mode.
  223. cmd_array[1] = start_column;
  224. cmd_array[4] = start_page;
  225. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
  226. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
  227. #endif
  228. }
  229. static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
  230. cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
  231. cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
  232. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
  233. ;
  234. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
  235. }
  236. uint8_t crot(uint8_t a, int8_t n) {
  237. const uint8_t mask = 0x7;
  238. n &= mask;
  239. return a << n | a >> (-n & mask);
  240. }
  241. static void rotate_90(const uint8_t *src, uint8_t *dest) {
  242. for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
  243. uint8_t selector = (1 << i);
  244. for (uint8_t j = 0; j < 8; ++j) {
  245. dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
  246. }
  247. }
  248. }
  249. void oled_render(void) {
  250. if (!oled_initialized) {
  251. return;
  252. }
  253. // Do we have work to do?
  254. oled_dirty &= OLED_ALL_BLOCKS_MASK;
  255. if (!oled_dirty || oled_scrolling) {
  256. return;
  257. }
  258. // Find first dirty block
  259. uint8_t update_start = 0;
  260. while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
  261. ++update_start;
  262. }
  263. // Set column & page position
  264. static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
  265. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  266. calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  267. } else {
  268. calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  269. }
  270. // Send column & page position
  271. if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
  272. print("oled_render offset command failed\n");
  273. return;
  274. }
  275. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  276. // Send render data chunk as is
  277. if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  278. print("oled_render data failed\n");
  279. return;
  280. }
  281. } else {
  282. // Rotate the render chunks
  283. const static uint8_t source_map[] = OLED_SOURCE_MAP;
  284. const static uint8_t target_map[] = OLED_TARGET_MAP;
  285. static uint8_t temp_buffer[OLED_BLOCK_SIZE];
  286. memset(temp_buffer, 0, sizeof(temp_buffer));
  287. for (uint8_t i = 0; i < sizeof(source_map); ++i) {
  288. rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
  289. }
  290. // Send render data chunk after rotating
  291. if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  292. print("oled_render90 data failed\n");
  293. return;
  294. }
  295. }
  296. // Turn on display if it is off
  297. oled_on();
  298. // Clear dirty flag
  299. oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
  300. }
  301. void oled_set_cursor(uint8_t col, uint8_t line) {
  302. uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
  303. // Out of bounds?
  304. if (index >= OLED_MATRIX_SIZE) {
  305. index = 0;
  306. }
  307. oled_cursor = &oled_buffer[index];
  308. }
  309. void oled_advance_page(bool clearPageRemainder) {
  310. uint16_t index = oled_cursor - &oled_buffer[0];
  311. uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
  312. if (clearPageRemainder) {
  313. // Remaining Char count
  314. remaining = remaining / OLED_FONT_WIDTH;
  315. // Write empty character until next line
  316. while (remaining--) oled_write_char(' ', false);
  317. } else {
  318. // Next page index out of bounds?
  319. if (index + remaining >= OLED_MATRIX_SIZE) {
  320. index = 0;
  321. remaining = 0;
  322. }
  323. oled_cursor = &oled_buffer[index + remaining];
  324. }
  325. }
  326. void oled_advance_char(void) {
  327. uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
  328. uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
  329. // Do we have enough space on the current line for the next character
  330. if (remainingSpace < OLED_FONT_WIDTH) {
  331. nextIndex += remainingSpace;
  332. }
  333. // Did we go out of bounds
  334. if (nextIndex >= OLED_MATRIX_SIZE) {
  335. nextIndex = 0;
  336. }
  337. // Update cursor position
  338. oled_cursor = &oled_buffer[nextIndex];
  339. }
  340. // Main handler that writes character data to the display buffer
  341. void oled_write_char(const char data, bool invert) {
  342. // Advance to the next line if newline
  343. if (data == '\n') {
  344. // Old source wrote ' ' until end of line...
  345. oled_advance_page(true);
  346. return;
  347. }
  348. if (data == '\r') {
  349. oled_advance_page(false);
  350. return;
  351. }
  352. // copy the current render buffer to check for dirty after
  353. static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
  354. memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
  355. _Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
  356. // set the reder buffer data
  357. uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
  358. if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
  359. memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
  360. } else {
  361. const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
  362. memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
  363. }
  364. // Invert if needed
  365. if (invert) {
  366. InvertCharacter(oled_cursor);
  367. }
  368. // Dirty check
  369. if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
  370. uint16_t index = oled_cursor - &oled_buffer[0];
  371. oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
  372. // Edgecase check if the written data spans the 2 chunks
  373. oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
  374. }
  375. // Finally move to the next char
  376. oled_advance_char();
  377. }
  378. void oled_write(const char *data, bool invert) {
  379. const char *end = data + strlen(data);
  380. while (data < end) {
  381. oled_write_char(*data, invert);
  382. data++;
  383. }
  384. }
  385. void oled_write_ln(const char *data, bool invert) {
  386. oled_write(data, invert);
  387. oled_advance_page(true);
  388. }
  389. void oled_pan(bool left) {
  390. uint16_t i = 0;
  391. for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
  392. if (left) {
  393. for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
  394. i = y * OLED_DISPLAY_WIDTH + x;
  395. oled_buffer[i] = oled_buffer[i + 1];
  396. }
  397. } else {
  398. for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
  399. i = y * OLED_DISPLAY_WIDTH + x;
  400. oled_buffer[i] = oled_buffer[i - 1];
  401. }
  402. }
  403. }
  404. oled_dirty = OLED_ALL_BLOCKS_MASK;
  405. }
  406. oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
  407. if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
  408. oled_buffer_reader_t ret_reader;
  409. ret_reader.current_element = &oled_buffer[start_index];
  410. ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
  411. return ret_reader;
  412. }
  413. void oled_write_raw_byte(const char data, uint16_t index) {
  414. if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
  415. if (oled_buffer[index] == data) return;
  416. oled_buffer[index] = data;
  417. oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
  418. }
  419. void oled_write_raw(const char *data, uint16_t size) {
  420. uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
  421. if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
  422. for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
  423. uint8_t c = *data++;
  424. if (oled_buffer[i] == c) continue;
  425. oled_buffer[i] = c;
  426. oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
  427. }
  428. }
  429. void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
  430. if (x >= oled_rotation_width) {
  431. return;
  432. }
  433. uint16_t index = x + (y / 8) * oled_rotation_width;
  434. if (index >= OLED_MATRIX_SIZE) {
  435. return;
  436. }
  437. uint8_t data = oled_buffer[index];
  438. if (on) {
  439. data |= (1 << (y % 8));
  440. } else {
  441. data &= ~(1 << (y % 8));
  442. }
  443. if (oled_buffer[index] != data) {
  444. oled_buffer[index] = data;
  445. oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
  446. }
  447. }
  448. #if defined(__AVR__)
  449. void oled_write_P(const char *data, bool invert) {
  450. uint8_t c = pgm_read_byte(data);
  451. while (c != 0) {
  452. oled_write_char(c, invert);
  453. c = pgm_read_byte(++data);
  454. }
  455. }
  456. void oled_write_ln_P(const char *data, bool invert) {
  457. oled_write_P(data, invert);
  458. oled_advance_page(true);
  459. }
  460. void oled_write_raw_P(const char *data, uint16_t size) {
  461. uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
  462. if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
  463. for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
  464. uint8_t c = pgm_read_byte(data++);
  465. if (oled_buffer[i] == c) continue;
  466. oled_buffer[i] = c;
  467. oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
  468. }
  469. }
  470. #endif // defined(__AVR__)
  471. bool oled_on(void) {
  472. if (!oled_initialized) {
  473. return oled_active;
  474. }
  475. #if OLED_TIMEOUT > 0
  476. oled_timeout = timer_read32() + OLED_TIMEOUT;
  477. #endif
  478. static const uint8_t PROGMEM display_on[] =
  479. #ifdef OLED_FADE_OUT
  480. {I2C_CMD, FADE_BLINK, 0x00};
  481. #else
  482. {I2C_CMD, DISPLAY_ON};
  483. #endif
  484. if (!oled_active) {
  485. if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
  486. print("oled_on cmd failed\n");
  487. return oled_active;
  488. }
  489. oled_active = true;
  490. }
  491. return oled_active;
  492. }
  493. bool oled_off(void) {
  494. if (!oled_initialized) {
  495. return !oled_active;
  496. }
  497. static const uint8_t PROGMEM display_off[] =
  498. #ifdef OLED_FADE_OUT
  499. {I2C_CMD, FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL};
  500. #else
  501. {I2C_CMD, DISPLAY_OFF};
  502. #endif
  503. if (oled_active) {
  504. if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
  505. print("oled_off cmd failed\n");
  506. return oled_active;
  507. }
  508. oled_active = false;
  509. }
  510. return !oled_active;
  511. }
  512. bool is_oled_on(void) { return oled_active; }
  513. uint8_t oled_set_brightness(uint8_t level) {
  514. if (!oled_initialized) {
  515. return oled_brightness;
  516. }
  517. uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level};
  518. if (oled_brightness != level) {
  519. if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) {
  520. print("set_brightness cmd failed\n");
  521. return oled_brightness;
  522. }
  523. oled_brightness = level;
  524. }
  525. return oled_brightness;
  526. }
  527. uint8_t oled_get_brightness(void) { return oled_brightness; }
  528. // Set the specific 8 lines rows of the screen to scroll.
  529. // 0 is the default for start, and 7 for end, which is the entire
  530. // height of the screen. For 128x32 screens, rows 4-7 are not used.
  531. void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
  532. oled_scroll_start = start_line;
  533. oled_scroll_end = end_line;
  534. }
  535. void oled_scroll_set_speed(uint8_t speed) {
  536. // Sets the speed for scrolling... does not take effect
  537. // until scrolling is either started or restarted
  538. // the ssd1306 supports 8 speeds
  539. // FrameRate2 speed = 7
  540. // FrameRate3 speed = 4
  541. // FrameRate4 speed = 5
  542. // FrameRate5 speed = 0
  543. // FrameRate25 speed = 6
  544. // FrameRate64 speed = 1
  545. // FrameRate128 speed = 2
  546. // FrameRate256 speed = 3
  547. // for ease of use these are remaped here to be in order
  548. static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
  549. oled_scroll_speed = scroll_remap[speed];
  550. }
  551. bool oled_scroll_right(void) {
  552. if (!oled_initialized) {
  553. return oled_scrolling;
  554. }
  555. // Dont enable scrolling if we need to update the display
  556. // This prevents scrolling of bad data from starting the scroll too early after init
  557. if (!oled_dirty && !oled_scrolling) {
  558. uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
  559. if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) {
  560. print("oled_scroll_right cmd failed\n");
  561. return oled_scrolling;
  562. }
  563. oled_scrolling = true;
  564. }
  565. return oled_scrolling;
  566. }
  567. bool oled_scroll_left(void) {
  568. if (!oled_initialized) {
  569. return oled_scrolling;
  570. }
  571. // Dont enable scrolling if we need to update the display
  572. // This prevents scrolling of bad data from starting the scroll too early after init
  573. if (!oled_dirty && !oled_scrolling) {
  574. uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
  575. if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) {
  576. print("oled_scroll_left cmd failed\n");
  577. return oled_scrolling;
  578. }
  579. oled_scrolling = true;
  580. }
  581. return oled_scrolling;
  582. }
  583. bool oled_scroll_off(void) {
  584. if (!oled_initialized) {
  585. return !oled_scrolling;
  586. }
  587. if (oled_scrolling) {
  588. static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
  589. if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
  590. print("oled_scroll_off cmd failed\n");
  591. return oled_scrolling;
  592. }
  593. oled_scrolling = false;
  594. oled_dirty = OLED_ALL_BLOCKS_MASK;
  595. }
  596. return !oled_scrolling;
  597. }
  598. bool oled_invert(bool invert) {
  599. if (!oled_initialized) {
  600. return oled_inverted;
  601. }
  602. if (invert && !oled_inverted) {
  603. static const uint8_t PROGMEM display_inverted[] = {I2C_CMD, INVERT_DISPLAY};
  604. if (I2C_TRANSMIT_P(display_inverted) != I2C_STATUS_SUCCESS) {
  605. print("oled_invert cmd failed\n");
  606. return oled_inverted;
  607. }
  608. oled_inverted = true;
  609. } else if (!invert && oled_inverted) {
  610. static const uint8_t PROGMEM display_normal[] = {I2C_CMD, NORMAL_DISPLAY};
  611. if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
  612. print("oled_invert cmd failed\n");
  613. return oled_inverted;
  614. }
  615. oled_inverted = false;
  616. }
  617. return oled_inverted;
  618. }
  619. uint8_t oled_max_chars(void) {
  620. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  621. return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
  622. }
  623. return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
  624. }
  625. uint8_t oled_max_lines(void) {
  626. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  627. return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
  628. }
  629. return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
  630. }
  631. void oled_task(void) {
  632. if (!oled_initialized) {
  633. return;
  634. }
  635. #if OLED_UPDATE_INTERVAL > 0
  636. if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) {
  637. oled_update_timeout = timer_read();
  638. oled_set_cursor(0, 0);
  639. oled_task_user();
  640. }
  641. #else
  642. oled_set_cursor(0, 0);
  643. oled_task_user();
  644. #endif
  645. #if OLED_SCROLL_TIMEOUT > 0
  646. if (oled_dirty && oled_scrolling) {
  647. oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
  648. oled_scroll_off();
  649. }
  650. #endif
  651. // Smart render system, no need to check for dirty
  652. oled_render();
  653. // Display timeout check
  654. #if OLED_TIMEOUT > 0
  655. if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
  656. oled_off();
  657. }
  658. #endif
  659. #if OLED_SCROLL_TIMEOUT > 0
  660. if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
  661. # ifdef OLED_SCROLL_TIMEOUT_RIGHT
  662. oled_scroll_right();
  663. # else
  664. oled_scroll_left();
  665. # endif
  666. }
  667. #endif
  668. }
  669. __attribute__((weak)) void oled_task_user(void) {}