quantum.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. #include "quantum.h"
  2. #ifndef TAPPING_TERM
  3. #define TAPPING_TERM 200
  4. #endif
  5. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  6. switch (code) {
  7. case QK_MODS ... QK_MODS_MAX:
  8. break;
  9. default:
  10. return;
  11. }
  12. if (code & QK_LCTL)
  13. f(KC_LCTL);
  14. if (code & QK_LSFT)
  15. f(KC_LSFT);
  16. if (code & QK_LALT)
  17. f(KC_LALT);
  18. if (code & QK_LGUI)
  19. f(KC_LGUI);
  20. if (code & QK_RCTL)
  21. f(KC_RCTL);
  22. if (code & QK_RSFT)
  23. f(KC_RSFT);
  24. if (code & QK_RALT)
  25. f(KC_RALT);
  26. if (code & QK_RGUI)
  27. f(KC_RGUI);
  28. }
  29. void register_code16 (uint16_t code) {
  30. do_code16 (code, register_code);
  31. register_code (code);
  32. }
  33. void unregister_code16 (uint16_t code) {
  34. unregister_code (code);
  35. do_code16 (code, unregister_code);
  36. }
  37. __attribute__ ((weak))
  38. bool process_action_kb(keyrecord_t *record) {
  39. return true;
  40. }
  41. __attribute__ ((weak))
  42. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  43. return process_record_user(keycode, record);
  44. }
  45. __attribute__ ((weak))
  46. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  47. return true;
  48. }
  49. void reset_keyboard(void) {
  50. clear_keyboard();
  51. #ifdef AUDIO_ENABLE
  52. stop_all_notes();
  53. shutdown_user();
  54. #endif
  55. wait_ms(250);
  56. #ifdef CATERINA_BOOTLOADER
  57. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  58. #endif
  59. bootloader_jump();
  60. }
  61. // Shift / paren setup
  62. #ifndef LSPO_KEY
  63. #define LSPO_KEY KC_9
  64. #endif
  65. #ifndef RSPC_KEY
  66. #define RSPC_KEY KC_0
  67. #endif
  68. static bool shift_interrupted[2] = {0, 0};
  69. static uint16_t scs_timer = 0;
  70. bool process_record_quantum(keyrecord_t *record) {
  71. /* This gets the keycode from the key pressed */
  72. keypos_t key = record->event.key;
  73. uint16_t keycode;
  74. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  75. /* TODO: Use store_or_get_action() or a similar function. */
  76. if (!disable_action_cache) {
  77. uint8_t layer;
  78. if (record->event.pressed) {
  79. layer = layer_switch_get_layer(key);
  80. update_source_layers_cache(key, layer);
  81. } else {
  82. layer = read_source_layers_cache(key);
  83. }
  84. keycode = keymap_key_to_keycode(layer, key);
  85. } else
  86. #endif
  87. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  88. // This is how you use actions here
  89. // if (keycode == KC_LEAD) {
  90. // action_t action;
  91. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  92. // process_action(record, action);
  93. // return false;
  94. // }
  95. if (!(
  96. process_record_kb(keycode, record) &&
  97. #ifdef MIDI_ENABLE
  98. process_midi(keycode, record) &&
  99. #endif
  100. #ifdef AUDIO_ENABLE
  101. process_music(keycode, record) &&
  102. #endif
  103. #ifdef TAP_DANCE_ENABLE
  104. process_tap_dance(keycode, record) &&
  105. #endif
  106. #ifndef DISABLE_LEADER
  107. process_leader(keycode, record) &&
  108. #endif
  109. #ifndef DISABLE_CHORDING
  110. process_chording(keycode, record) &&
  111. #endif
  112. #ifdef UNICODE_ENABLE
  113. process_unicode(keycode, record) &&
  114. #endif
  115. #ifdef UCIS_ENABLE
  116. process_ucis(keycode, record) &&
  117. #endif
  118. #ifdef PRINTING_ENABLE
  119. process_printer(keycode, record) &&
  120. #endif
  121. #ifdef UNICODEMAP_ENABLE
  122. process_unicode_map(keycode, record) &&
  123. #endif
  124. true)) {
  125. return false;
  126. }
  127. // Shift / paren setup
  128. switch(keycode) {
  129. case RESET:
  130. if (record->event.pressed) {
  131. reset_keyboard();
  132. }
  133. return false;
  134. break;
  135. case DEBUG:
  136. if (record->event.pressed) {
  137. print("\nDEBUG: enabled.\n");
  138. debug_enable = true;
  139. }
  140. return false;
  141. break;
  142. #ifdef RGBLIGHT_ENABLE
  143. case RGB_TOG:
  144. if (record->event.pressed) {
  145. rgblight_toggle();
  146. }
  147. return false;
  148. break;
  149. case RGB_MOD:
  150. if (record->event.pressed) {
  151. rgblight_step();
  152. }
  153. return false;
  154. break;
  155. case RGB_HUI:
  156. if (record->event.pressed) {
  157. rgblight_increase_hue();
  158. }
  159. return false;
  160. break;
  161. case RGB_HUD:
  162. if (record->event.pressed) {
  163. rgblight_decrease_hue();
  164. }
  165. return false;
  166. break;
  167. case RGB_SAI:
  168. if (record->event.pressed) {
  169. rgblight_increase_sat();
  170. }
  171. return false;
  172. break;
  173. case RGB_SAD:
  174. if (record->event.pressed) {
  175. rgblight_decrease_sat();
  176. }
  177. return false;
  178. break;
  179. case RGB_VAI:
  180. if (record->event.pressed) {
  181. rgblight_increase_val();
  182. }
  183. return false;
  184. break;
  185. case RGB_VAD:
  186. if (record->event.pressed) {
  187. rgblight_decrease_val();
  188. }
  189. return false;
  190. break;
  191. #endif
  192. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  193. if (record->event.pressed) {
  194. // MAGIC actions (BOOTMAGIC without the boot)
  195. if (!eeconfig_is_enabled()) {
  196. eeconfig_init();
  197. }
  198. /* keymap config */
  199. keymap_config.raw = eeconfig_read_keymap();
  200. switch (keycode)
  201. {
  202. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  203. keymap_config.swap_control_capslock = true;
  204. break;
  205. case MAGIC_CAPSLOCK_TO_CONTROL:
  206. keymap_config.capslock_to_control = true;
  207. break;
  208. case MAGIC_SWAP_LALT_LGUI:
  209. keymap_config.swap_lalt_lgui = true;
  210. break;
  211. case MAGIC_SWAP_RALT_RGUI:
  212. keymap_config.swap_ralt_rgui = true;
  213. break;
  214. case MAGIC_NO_GUI:
  215. keymap_config.no_gui = true;
  216. break;
  217. case MAGIC_SWAP_GRAVE_ESC:
  218. keymap_config.swap_grave_esc = true;
  219. break;
  220. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  221. keymap_config.swap_backslash_backspace = true;
  222. break;
  223. case MAGIC_HOST_NKRO:
  224. keymap_config.nkro = true;
  225. break;
  226. case MAGIC_SWAP_ALT_GUI:
  227. keymap_config.swap_lalt_lgui = true;
  228. keymap_config.swap_ralt_rgui = true;
  229. break;
  230. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  231. keymap_config.swap_control_capslock = false;
  232. break;
  233. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  234. keymap_config.capslock_to_control = false;
  235. break;
  236. case MAGIC_UNSWAP_LALT_LGUI:
  237. keymap_config.swap_lalt_lgui = false;
  238. break;
  239. case MAGIC_UNSWAP_RALT_RGUI:
  240. keymap_config.swap_ralt_rgui = false;
  241. break;
  242. case MAGIC_UNNO_GUI:
  243. keymap_config.no_gui = false;
  244. break;
  245. case MAGIC_UNSWAP_GRAVE_ESC:
  246. keymap_config.swap_grave_esc = false;
  247. break;
  248. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  249. keymap_config.swap_backslash_backspace = false;
  250. break;
  251. case MAGIC_UNHOST_NKRO:
  252. keymap_config.nkro = false;
  253. break;
  254. case MAGIC_UNSWAP_ALT_GUI:
  255. keymap_config.swap_lalt_lgui = false;
  256. keymap_config.swap_ralt_rgui = false;
  257. break;
  258. case MAGIC_TOGGLE_NKRO:
  259. keymap_config.nkro = !keymap_config.nkro;
  260. break;
  261. default:
  262. break;
  263. }
  264. eeconfig_update_keymap(keymap_config.raw);
  265. clear_keyboard(); // clear to prevent stuck keys
  266. return false;
  267. }
  268. break;
  269. case KC_LSPO: {
  270. if (record->event.pressed) {
  271. shift_interrupted[0] = false;
  272. scs_timer = timer_read ();
  273. register_mods(MOD_BIT(KC_LSFT));
  274. }
  275. else {
  276. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  277. if (get_mods() & MOD_BIT(KC_RSFT)) {
  278. shift_interrupted[0] = true;
  279. shift_interrupted[1] = true;
  280. }
  281. #endif
  282. if (!shift_interrupted[0] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  283. register_code(LSPO_KEY);
  284. unregister_code(LSPO_KEY);
  285. }
  286. unregister_mods(MOD_BIT(KC_LSFT));
  287. }
  288. return false;
  289. // break;
  290. }
  291. case KC_RSPC: {
  292. if (record->event.pressed) {
  293. shift_interrupted[1] = false;
  294. scs_timer = timer_read ();
  295. register_mods(MOD_BIT(KC_RSFT));
  296. }
  297. else {
  298. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  299. if (get_mods() & MOD_BIT(KC_LSFT)) {
  300. shift_interrupted[0] = true;
  301. shift_interrupted[1] = true;
  302. }
  303. #endif
  304. if (!shift_interrupted[1] && timer_elapsed(scs_timer) < TAPPING_TERM) {
  305. register_code(RSPC_KEY);
  306. unregister_code(RSPC_KEY);
  307. }
  308. unregister_mods(MOD_BIT(KC_RSFT));
  309. }
  310. return false;
  311. // break;
  312. }
  313. default: {
  314. shift_interrupted[0] = true;
  315. shift_interrupted[1] = true;
  316. break;
  317. }
  318. }
  319. return process_action_kb(record);
  320. }
  321. const bool ascii_to_qwerty_shift_lut[0x80] PROGMEM = {
  322. 0, 0, 0, 0, 0, 0, 0, 0,
  323. 0, 0, 0, 0, 0, 0, 0, 0,
  324. 0, 0, 0, 0, 0, 0, 0, 0,
  325. 0, 0, 0, 0, 0, 0, 0, 0,
  326. 0, 1, 1, 1, 1, 1, 1, 0,
  327. 1, 1, 1, 1, 0, 0, 0, 0,
  328. 0, 0, 0, 0, 0, 0, 0, 0,
  329. 0, 0, 1, 0, 1, 0, 1, 1,
  330. 1, 1, 1, 1, 1, 1, 1, 1,
  331. 1, 1, 1, 1, 1, 1, 1, 1,
  332. 1, 1, 1, 1, 1, 1, 1, 1,
  333. 1, 1, 1, 0, 0, 0, 1, 1,
  334. 0, 0, 0, 0, 0, 0, 0, 0,
  335. 0, 0, 0, 0, 0, 0, 0, 0,
  336. 0, 0, 0, 0, 0, 0, 0, 0,
  337. 0, 0, 0, 1, 1, 1, 1, 0
  338. };
  339. const uint8_t ascii_to_qwerty_keycode_lut[0x80] PROGMEM = {
  340. 0, 0, 0, 0, 0, 0, 0, 0,
  341. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  342. 0, 0, 0, 0, 0, 0, 0, 0,
  343. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  344. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  345. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  346. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  347. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  348. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  349. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  350. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  351. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  352. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  353. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  354. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  355. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  356. };
  357. /* for users whose OSes are set to Colemak */
  358. #if 0
  359. #include "keymap_colemak.h"
  360. const bool ascii_to_colemak_shift_lut[0x80] PROGMEM = {
  361. 0, 0, 0, 0, 0, 0, 0, 0,
  362. 0, 0, 0, 0, 0, 0, 0, 0,
  363. 0, 0, 0, 0, 0, 0, 0, 0,
  364. 0, 0, 0, 0, 0, 0, 0, 0,
  365. 0, 1, 1, 1, 1, 1, 1, 0,
  366. 1, 1, 1, 1, 0, 0, 0, 0,
  367. 0, 0, 0, 0, 0, 0, 0, 0,
  368. 0, 0, 1, 0, 1, 0, 1, 1,
  369. 1, 1, 1, 1, 1, 1, 1, 1,
  370. 1, 1, 1, 1, 1, 1, 1, 1,
  371. 1, 1, 1, 1, 1, 1, 1, 1,
  372. 1, 1, 1, 0, 0, 0, 1, 1,
  373. 0, 0, 0, 0, 0, 0, 0, 0,
  374. 0, 0, 0, 0, 0, 0, 0, 0,
  375. 0, 0, 0, 0, 0, 0, 0, 0,
  376. 0, 0, 0, 1, 1, 1, 1, 0
  377. };
  378. const uint8_t ascii_to_colemak_keycode_lut[0x80] PROGMEM = {
  379. 0, 0, 0, 0, 0, 0, 0, 0,
  380. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  381. 0, 0, 0, 0, 0, 0, 0, 0,
  382. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  383. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  384. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  385. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  386. KC_8, KC_9, CM_SCLN, CM_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  387. KC_2, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  388. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  389. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  390. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  391. KC_GRV, CM_A, CM_B, CM_C, CM_D, CM_E, CM_F, CM_G,
  392. CM_H, CM_I, CM_J, CM_K, CM_L, CM_M, CM_N, CM_O,
  393. CM_P, CM_Q, CM_R, CM_S, CM_T, CM_U, CM_V, CM_W,
  394. CM_X, CM_Y, CM_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  395. };
  396. #endif
  397. void send_string(const char *str) {
  398. while (1) {
  399. uint8_t keycode;
  400. uint8_t ascii_code = pgm_read_byte(str);
  401. if (!ascii_code) break;
  402. keycode = pgm_read_byte(&ascii_to_qwerty_keycode_lut[ascii_code]);
  403. if (pgm_read_byte(&ascii_to_qwerty_shift_lut[ascii_code])) {
  404. register_code(KC_LSFT);
  405. register_code(keycode);
  406. unregister_code(keycode);
  407. unregister_code(KC_LSFT);
  408. }
  409. else {
  410. register_code(keycode);
  411. unregister_code(keycode);
  412. }
  413. ++str;
  414. }
  415. }
  416. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  417. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  418. layer_on(layer3);
  419. } else {
  420. layer_off(layer3);
  421. }
  422. }
  423. void tap_random_base64(void) {
  424. #if defined(__AVR_ATmega32U4__)
  425. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  426. #else
  427. uint8_t key = rand() % 64;
  428. #endif
  429. switch (key) {
  430. case 0 ... 25:
  431. register_code(KC_LSFT);
  432. register_code(key + KC_A);
  433. unregister_code(key + KC_A);
  434. unregister_code(KC_LSFT);
  435. break;
  436. case 26 ... 51:
  437. register_code(key - 26 + KC_A);
  438. unregister_code(key - 26 + KC_A);
  439. break;
  440. case 52:
  441. register_code(KC_0);
  442. unregister_code(KC_0);
  443. break;
  444. case 53 ... 61:
  445. register_code(key - 53 + KC_1);
  446. unregister_code(key - 53 + KC_1);
  447. break;
  448. case 62:
  449. register_code(KC_LSFT);
  450. register_code(KC_EQL);
  451. unregister_code(KC_EQL);
  452. unregister_code(KC_LSFT);
  453. break;
  454. case 63:
  455. register_code(KC_SLSH);
  456. unregister_code(KC_SLSH);
  457. break;
  458. }
  459. }
  460. void matrix_init_quantum() {
  461. #ifdef BACKLIGHT_ENABLE
  462. backlight_init_ports();
  463. #endif
  464. matrix_init_kb();
  465. }
  466. void matrix_scan_quantum() {
  467. #ifdef AUDIO_ENABLE
  468. matrix_scan_music();
  469. #endif
  470. #ifdef TAP_DANCE_ENABLE
  471. matrix_scan_tap_dance();
  472. #endif
  473. matrix_scan_kb();
  474. }
  475. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  476. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  477. #if BACKLIGHT_PIN == B7
  478. # define COM1x1 COM1C1
  479. # define OCR1x OCR1C
  480. #elif BACKLIGHT_PIN == B6
  481. # define COM1x1 COM1B1
  482. # define OCR1x OCR1B
  483. #elif BACKLIGHT_PIN == B5
  484. # define COM1x1 COM1A1
  485. # define OCR1x OCR1A
  486. #else
  487. # error "Backlight pin not supported - use B5, B6, or B7"
  488. #endif
  489. __attribute__ ((weak))
  490. void backlight_init_ports(void)
  491. {
  492. // Setup backlight pin as output and output low.
  493. // DDRx |= n
  494. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  495. // PORTx &= ~n
  496. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  497. // Use full 16-bit resolution.
  498. ICR1 = 0xFFFF;
  499. // I could write a wall of text here to explain... but TL;DW
  500. // Go read the ATmega32u4 datasheet.
  501. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  502. // Pin PB7 = OCR1C (Timer 1, Channel C)
  503. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  504. // (i.e. start high, go low when counter matches.)
  505. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  506. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  507. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  508. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  509. backlight_init();
  510. #ifdef BACKLIGHT_BREATHING
  511. breathing_defaults();
  512. #endif
  513. }
  514. __attribute__ ((weak))
  515. void backlight_set(uint8_t level)
  516. {
  517. // Prevent backlight blink on lowest level
  518. // PORTx &= ~n
  519. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  520. if ( level == 0 ) {
  521. // Turn off PWM control on backlight pin, revert to output low.
  522. TCCR1A &= ~(_BV(COM1x1));
  523. OCR1x = 0x0;
  524. } else if ( level == BACKLIGHT_LEVELS ) {
  525. // Turn on PWM control of backlight pin
  526. TCCR1A |= _BV(COM1x1);
  527. // Set the brightness
  528. OCR1x = 0xFFFF;
  529. } else {
  530. // Turn on PWM control of backlight pin
  531. TCCR1A |= _BV(COM1x1);
  532. // Set the brightness
  533. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  534. }
  535. #ifdef BACKLIGHT_BREATHING
  536. breathing_intensity_default();
  537. #endif
  538. }
  539. #ifdef BACKLIGHT_BREATHING
  540. #define BREATHING_NO_HALT 0
  541. #define BREATHING_HALT_OFF 1
  542. #define BREATHING_HALT_ON 2
  543. static uint8_t breath_intensity;
  544. static uint8_t breath_speed;
  545. static uint16_t breathing_index;
  546. static uint8_t breathing_halt;
  547. void breathing_enable(void)
  548. {
  549. if (get_backlight_level() == 0)
  550. {
  551. breathing_index = 0;
  552. }
  553. else
  554. {
  555. // Set breathing_index to be at the midpoint (brightest point)
  556. breathing_index = 0x20 << breath_speed;
  557. }
  558. breathing_halt = BREATHING_NO_HALT;
  559. // Enable breathing interrupt
  560. TIMSK1 |= _BV(OCIE1A);
  561. }
  562. void breathing_pulse(void)
  563. {
  564. if (get_backlight_level() == 0)
  565. {
  566. breathing_index = 0;
  567. }
  568. else
  569. {
  570. // Set breathing_index to be at the midpoint + 1 (brightest point)
  571. breathing_index = 0x21 << breath_speed;
  572. }
  573. breathing_halt = BREATHING_HALT_ON;
  574. // Enable breathing interrupt
  575. TIMSK1 |= _BV(OCIE1A);
  576. }
  577. void breathing_disable(void)
  578. {
  579. // Disable breathing interrupt
  580. TIMSK1 &= ~_BV(OCIE1A);
  581. backlight_set(get_backlight_level());
  582. }
  583. void breathing_self_disable(void)
  584. {
  585. if (get_backlight_level() == 0)
  586. {
  587. breathing_halt = BREATHING_HALT_OFF;
  588. }
  589. else
  590. {
  591. breathing_halt = BREATHING_HALT_ON;
  592. }
  593. //backlight_set(get_backlight_level());
  594. }
  595. void breathing_toggle(void)
  596. {
  597. if (!is_breathing())
  598. {
  599. if (get_backlight_level() == 0)
  600. {
  601. breathing_index = 0;
  602. }
  603. else
  604. {
  605. // Set breathing_index to be at the midpoint + 1 (brightest point)
  606. breathing_index = 0x21 << breath_speed;
  607. }
  608. breathing_halt = BREATHING_NO_HALT;
  609. }
  610. // Toggle breathing interrupt
  611. TIMSK1 ^= _BV(OCIE1A);
  612. // Restore backlight level
  613. if (!is_breathing())
  614. {
  615. backlight_set(get_backlight_level());
  616. }
  617. }
  618. bool is_breathing(void)
  619. {
  620. return (TIMSK1 && _BV(OCIE1A));
  621. }
  622. void breathing_intensity_default(void)
  623. {
  624. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  625. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  626. }
  627. void breathing_intensity_set(uint8_t value)
  628. {
  629. breath_intensity = value;
  630. }
  631. void breathing_speed_default(void)
  632. {
  633. breath_speed = 4;
  634. }
  635. void breathing_speed_set(uint8_t value)
  636. {
  637. bool is_breathing_now = is_breathing();
  638. uint8_t old_breath_speed = breath_speed;
  639. if (is_breathing_now)
  640. {
  641. // Disable breathing interrupt
  642. TIMSK1 &= ~_BV(OCIE1A);
  643. }
  644. breath_speed = value;
  645. if (is_breathing_now)
  646. {
  647. // Adjust index to account for new speed
  648. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  649. // Enable breathing interrupt
  650. TIMSK1 |= _BV(OCIE1A);
  651. }
  652. }
  653. void breathing_speed_inc(uint8_t value)
  654. {
  655. if ((uint16_t)(breath_speed - value) > 10 )
  656. {
  657. breathing_speed_set(0);
  658. }
  659. else
  660. {
  661. breathing_speed_set(breath_speed - value);
  662. }
  663. }
  664. void breathing_speed_dec(uint8_t value)
  665. {
  666. if ((uint16_t)(breath_speed + value) > 10 )
  667. {
  668. breathing_speed_set(10);
  669. }
  670. else
  671. {
  672. breathing_speed_set(breath_speed + value);
  673. }
  674. }
  675. void breathing_defaults(void)
  676. {
  677. breathing_intensity_default();
  678. breathing_speed_default();
  679. breathing_halt = BREATHING_NO_HALT;
  680. }
  681. /* Breathing Sleep LED brighness(PWM On period) table
  682. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  683. *
  684. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  685. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  686. */
  687. static const uint8_t breathing_table[64] PROGMEM = {
  688. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  689. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  690. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  691. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  692. };
  693. ISR(TIMER1_COMPA_vect)
  694. {
  695. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  696. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  697. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  698. {
  699. // Disable breathing interrupt
  700. TIMSK1 &= ~_BV(OCIE1A);
  701. }
  702. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  703. }
  704. #endif // breathing
  705. #else // backlight
  706. __attribute__ ((weak))
  707. void backlight_init_ports(void)
  708. {
  709. }
  710. __attribute__ ((weak))
  711. void backlight_set(uint8_t level)
  712. {
  713. }
  714. #endif // backlight
  715. // Functions for spitting out values
  716. //
  717. void send_dword(uint32_t number) { // this might not actually work
  718. uint16_t word = (number >> 16);
  719. send_word(word);
  720. send_word(number & 0xFFFFUL);
  721. }
  722. void send_word(uint16_t number) {
  723. uint8_t byte = number >> 8;
  724. send_byte(byte);
  725. send_byte(number & 0xFF);
  726. }
  727. void send_byte(uint8_t number) {
  728. uint8_t nibble = number >> 4;
  729. send_nibble(nibble);
  730. send_nibble(number & 0xF);
  731. }
  732. void send_nibble(uint8_t number) {
  733. switch (number) {
  734. case 0:
  735. register_code(KC_0);
  736. unregister_code(KC_0);
  737. break;
  738. case 1 ... 9:
  739. register_code(KC_1 + (number - 1));
  740. unregister_code(KC_1 + (number - 1));
  741. break;
  742. case 0xA ... 0xF:
  743. register_code(KC_A + (number - 0xA));
  744. unregister_code(KC_A + (number - 0xA));
  745. break;
  746. }
  747. }
  748. void api_send_unicode(uint32_t unicode) {
  749. #ifdef API_ENABLE
  750. uint8_t chunk[4];
  751. dword_to_bytes(unicode, chunk);
  752. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  753. #endif
  754. }
  755. __attribute__ ((weak))
  756. void led_set_user(uint8_t usb_led) {
  757. }
  758. __attribute__ ((weak))
  759. void led_set_kb(uint8_t usb_led) {
  760. led_set_user(usb_led);
  761. }
  762. __attribute__ ((weak))
  763. void led_init_ports(void)
  764. {
  765. }
  766. __attribute__ ((weak))
  767. void led_set(uint8_t usb_led)
  768. {
  769. // Example LED Code
  770. //
  771. // // Using PE6 Caps Lock LED
  772. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  773. // {
  774. // // Output high.
  775. // DDRE |= (1<<6);
  776. // PORTE |= (1<<6);
  777. // }
  778. // else
  779. // {
  780. // // Output low.
  781. // DDRE &= ~(1<<6);
  782. // PORTE &= ~(1<<6);
  783. // }
  784. led_set_kb(usb_led);
  785. }
  786. //------------------------------------------------------------------------------
  787. // Override these functions in your keymap file to play different tunes on
  788. // different events such as startup and bootloader jump
  789. __attribute__ ((weak))
  790. void startup_user() {}
  791. __attribute__ ((weak))
  792. void shutdown_user() {}
  793. //------------------------------------------------------------------------------