dynamic_keymap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /* Copyright 2017 Jason Williams (Wilba)
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "keymap.h" // to get keymaps[][][]
  17. #include "eeprom.h"
  18. #include "progmem.h" // to read default from flash
  19. #include "quantum.h" // for send_string()
  20. #include "dynamic_keymap.h"
  21. #include "via.h" // for default VIA_EEPROM_ADDR_END
  22. #ifdef ENCODER_ENABLE
  23. # include "encoder.h"
  24. #else
  25. # define NUM_ENCODERS 0
  26. #endif
  27. #ifndef DYNAMIC_KEYMAP_LAYER_COUNT
  28. # define DYNAMIC_KEYMAP_LAYER_COUNT 4
  29. #endif
  30. #ifndef DYNAMIC_KEYMAP_MACRO_COUNT
  31. # define DYNAMIC_KEYMAP_MACRO_COUNT 16
  32. #endif
  33. #ifndef TOTAL_EEPROM_BYTE_COUNT
  34. # error Unknown total EEPROM size. Cannot derive maximum for dynamic keymaps.
  35. #endif
  36. #ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR
  37. # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR (TOTAL_EEPROM_BYTE_COUNT - 1)
  38. #endif
  39. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > (TOTAL_EEPROM_BYTE_COUNT - 1)
  40. # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > " STR((TOTAL_EEPROM_BYTE_COUNT - 1))
  41. # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is configured to use more space than what is available for the selected EEPROM driver
  42. #endif
  43. // Due to usage of uint16_t check for max 65535
  44. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535
  45. # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > 65535"
  46. # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536
  47. #endif
  48. // If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h,
  49. // default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE
  50. #ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
  51. # ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR
  52. # define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE)
  53. # else
  54. # error DYNAMIC_KEYMAP_EEPROM_ADDR not defined
  55. # endif
  56. #endif
  57. // Dynamic encoders starts after dynamic keymaps
  58. #ifndef DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR
  59. # define DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
  60. #endif
  61. // Dynamic macro starts after dynamic encoders, but only when using ENCODER_MAP
  62. #ifdef ENCODER_MAP_ENABLE
  63. # ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
  64. # define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * NUM_ENCODERS * 2 * 2))
  65. # endif // DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
  66. #else // ENCODER_MAP_ENABLE
  67. # ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
  68. # define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR)
  69. # endif // DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
  70. #endif // ENCODER_MAP_ENABLE
  71. // Sanity check that dynamic keymaps fit in available EEPROM
  72. // If there's not 100 bytes available for macros, then something is wrong.
  73. // The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it,
  74. // or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has
  75. // more than the default.
  76. _Static_assert((DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) - (DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR) >= 100, "Dynamic keymaps are configured to use more EEPROM than is available.");
  77. // Dynamic macros are stored after the keymaps and use what is available
  78. // up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR.
  79. #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
  80. # define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1)
  81. #endif
  82. #ifndef DYNAMIC_KEYMAP_MACRO_DELAY
  83. # define DYNAMIC_KEYMAP_MACRO_DELAY TAP_CODE_DELAY
  84. #endif
  85. uint8_t dynamic_keymap_get_layer_count(void) {
  86. return DYNAMIC_KEYMAP_LAYER_COUNT;
  87. }
  88. void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) {
  89. // TODO: optimize this with some left shifts
  90. return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2);
  91. }
  92. uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
  93. if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return KC_NO;
  94. void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
  95. // Big endian, so we can read/write EEPROM directly from host if we want
  96. uint16_t keycode = eeprom_read_byte(address) << 8;
  97. keycode |= eeprom_read_byte(address + 1);
  98. return keycode;
  99. }
  100. void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
  101. if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return;
  102. void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
  103. // Big endian, so we can read/write EEPROM directly from host if we want
  104. eeprom_update_byte(address, (uint8_t)(keycode >> 8));
  105. eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
  106. }
  107. #ifdef ENCODER_MAP_ENABLE
  108. void *dynamic_keymap_encoder_to_eeprom_address(uint8_t layer, uint8_t encoder_id) {
  109. return ((void *)DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR) + (layer * NUM_ENCODERS * 2 * 2) + (encoder_id * 2 * 2);
  110. }
  111. uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise) {
  112. if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return KC_NO;
  113. void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
  114. // Big endian, so we can read/write EEPROM directly from host if we want
  115. uint16_t keycode = ((uint16_t)eeprom_read_byte(address + (clockwise ? 0 : 2))) << 8;
  116. keycode |= eeprom_read_byte(address + (clockwise ? 0 : 2) + 1);
  117. return keycode;
  118. }
  119. void dynamic_keymap_set_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise, uint16_t keycode) {
  120. if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return;
  121. void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
  122. // Big endian, so we can read/write EEPROM directly from host if we want
  123. eeprom_update_byte(address + (clockwise ? 0 : 2), (uint8_t)(keycode >> 8));
  124. eeprom_update_byte(address + (clockwise ? 0 : 2) + 1, (uint8_t)(keycode & 0xFF));
  125. }
  126. #endif // ENCODER_MAP_ENABLE
  127. void dynamic_keymap_reset(void) {
  128. // Reset the keymaps in EEPROM to what is in flash.
  129. // All keyboards using dynamic keymaps should define a layout
  130. // for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT.
  131. for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) {
  132. for (int row = 0; row < MATRIX_ROWS; row++) {
  133. for (int column = 0; column < MATRIX_COLS; column++) {
  134. dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
  135. }
  136. }
  137. #ifdef ENCODER_MAP_ENABLE
  138. for (int encoder = 0; encoder < NUM_ENCODERS; encoder++) {
  139. dynamic_keymap_set_encoder(layer, encoder, true, pgm_read_word(&encoder_map[layer][encoder][0]));
  140. dynamic_keymap_set_encoder(layer, encoder, false, pgm_read_word(&encoder_map[layer][encoder][1]));
  141. }
  142. #endif // ENCODER_MAP_ENABLE
  143. }
  144. }
  145. void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  146. uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
  147. void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
  148. uint8_t *target = data;
  149. for (uint16_t i = 0; i < size; i++) {
  150. if (offset + i < dynamic_keymap_eeprom_size) {
  151. *target = eeprom_read_byte(source);
  152. } else {
  153. *target = 0x00;
  154. }
  155. source++;
  156. target++;
  157. }
  158. }
  159. void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  160. uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
  161. void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
  162. uint8_t *source = data;
  163. for (uint16_t i = 0; i < size; i++) {
  164. if (offset + i < dynamic_keymap_eeprom_size) {
  165. eeprom_update_byte(target, *source);
  166. }
  167. source++;
  168. target++;
  169. }
  170. }
  171. // This overrides the one in quantum/keymap_common.c
  172. uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
  173. if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
  174. return dynamic_keymap_get_keycode(layer, key.row, key.col);
  175. }
  176. #ifdef ENCODER_MAP_ENABLE
  177. else if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row == KEYLOC_ENCODER_CW && key.col < NUM_ENCODERS) {
  178. return dynamic_keymap_get_encoder(layer, key.col, true);
  179. } else if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row == KEYLOC_ENCODER_CCW && key.col < NUM_ENCODERS) {
  180. return dynamic_keymap_get_encoder(layer, key.col, false);
  181. }
  182. #endif // ENCODER_MAP_ENABLE
  183. return KC_NO;
  184. }
  185. uint8_t dynamic_keymap_macro_get_count(void) {
  186. return DYNAMIC_KEYMAP_MACRO_COUNT;
  187. }
  188. uint16_t dynamic_keymap_macro_get_buffer_size(void) {
  189. return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE;
  190. }
  191. void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  192. void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
  193. uint8_t *target = data;
  194. for (uint16_t i = 0; i < size; i++) {
  195. if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
  196. *target = eeprom_read_byte(source);
  197. } else {
  198. *target = 0x00;
  199. }
  200. source++;
  201. target++;
  202. }
  203. }
  204. void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  205. void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
  206. uint8_t *source = data;
  207. for (uint16_t i = 0; i < size; i++) {
  208. if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
  209. eeprom_update_byte(target, *source);
  210. }
  211. source++;
  212. target++;
  213. }
  214. }
  215. void dynamic_keymap_macro_reset(void) {
  216. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
  217. void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
  218. while (p != end) {
  219. eeprom_update_byte(p, 0);
  220. ++p;
  221. }
  222. }
  223. void dynamic_keymap_macro_send(uint8_t id) {
  224. if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) {
  225. return;
  226. }
  227. // Check the last byte of the buffer.
  228. // If it's not zero, then we are in the middle
  229. // of buffer writing, possibly an aborted buffer
  230. // write. So do nothing.
  231. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1);
  232. if (eeprom_read_byte(p) != 0) {
  233. return;
  234. }
  235. // Skip N null characters
  236. // p will then point to the Nth macro
  237. p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
  238. void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
  239. while (id > 0) {
  240. // If we are past the end of the buffer, then the buffer
  241. // contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
  242. // nulls in the buffer.
  243. if (p == end) {
  244. return;
  245. }
  246. if (eeprom_read_byte(p) == 0) {
  247. --id;
  248. }
  249. ++p;
  250. }
  251. // Send the macro string one or three chars at a time
  252. // by making temporary 1 or 3 char strings
  253. char data[4] = {0, 0, 0, 0};
  254. // We already checked there was a null at the end of
  255. // the buffer, so this cannot go past the end
  256. while (1) {
  257. data[0] = eeprom_read_byte(p++);
  258. data[1] = 0;
  259. // Stop at the null terminator of this macro string
  260. if (data[0] == 0) {
  261. break;
  262. }
  263. // If the char is magic (tap, down, up),
  264. // add the next char (key to use) and send a 3 char string.
  265. if (data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE) {
  266. data[1] = data[0];
  267. data[0] = SS_QMK_PREFIX;
  268. data[2] = eeprom_read_byte(p++);
  269. if (data[2] == 0) {
  270. break;
  271. }
  272. }
  273. send_string_with_delay(data, DYNAMIC_KEYMAP_MACRO_DELAY);
  274. }
  275. }