matrix.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <avr/io.h>
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "split_util.h"
  26. #include "pro_micro.h"
  27. #include "config.h"
  28. #include "timer.h"
  29. #ifdef USE_I2C
  30. # include "i2c.h"
  31. #else // USE_SERIAL
  32. # include "serial.h"
  33. #endif
  34. #ifndef DEBOUNCING_DELAY
  35. # define DEBOUNCING_DELAY 5
  36. #endif
  37. #if (DEBOUNCING_DELAY > 0)
  38. static uint16_t debouncing_time;
  39. static bool debouncing = false;
  40. #endif
  41. #if (MATRIX_COLS <= 8)
  42. # define print_matrix_header() print("\nr/c 01234567\n")
  43. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  44. # define matrix_bitpop(i) bitpop(matrix[i])
  45. # define ROW_SHIFTER ((uint8_t)1)
  46. #else
  47. # error "Currently only supports 8 COLS"
  48. #endif
  49. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  50. #define ERROR_DISCONNECT_COUNT 5
  51. #define ROWS_PER_HAND (MATRIX_ROWS/2)
  52. static uint8_t error_count = 0;
  53. static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  54. static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  55. /* matrix state(1:on, 0:off) */
  56. static matrix_row_t matrix[MATRIX_ROWS];
  57. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  58. #if (DIODE_DIRECTION == COL2ROW)
  59. static void init_cols(void);
  60. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  61. static void unselect_rows(void);
  62. static void select_row(uint8_t row);
  63. static void unselect_row(uint8_t row);
  64. #elif (DIODE_DIRECTION == ROW2COL)
  65. static void init_rows(void);
  66. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  67. static void unselect_cols(void);
  68. static void unselect_col(uint8_t col);
  69. static void select_col(uint8_t col);
  70. #endif
  71. __attribute__ ((weak))
  72. void matrix_init_kb(void) {
  73. matrix_init_user();
  74. }
  75. __attribute__ ((weak))
  76. void matrix_scan_kb(void) {
  77. matrix_scan_user();
  78. }
  79. __attribute__ ((weak))
  80. void matrix_init_user(void) {
  81. }
  82. __attribute__ ((weak))
  83. void matrix_scan_user(void) {
  84. }
  85. inline
  86. uint8_t matrix_rows(void)
  87. {
  88. return MATRIX_ROWS;
  89. }
  90. inline
  91. uint8_t matrix_cols(void)
  92. {
  93. return MATRIX_COLS;
  94. }
  95. void matrix_init(void)
  96. {
  97. debug_enable = true;
  98. debug_matrix = true;
  99. debug_mouse = true;
  100. // initialize row and col
  101. #if (DIODE_DIRECTION == COL2ROW)
  102. unselect_rows();
  103. init_cols();
  104. #elif (DIODE_DIRECTION == ROW2COL)
  105. unselect_cols();
  106. init_rows();
  107. #endif
  108. TX_RX_LED_INIT;
  109. // initialize matrix state: all keys off
  110. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  111. matrix[i] = 0;
  112. matrix_debouncing[i] = 0;
  113. }
  114. matrix_init_quantum();
  115. }
  116. uint8_t _matrix_scan(void)
  117. {
  118. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  119. #if (DIODE_DIRECTION == COL2ROW)
  120. // Set row, read cols
  121. for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
  122. # if (DEBOUNCING_DELAY > 0)
  123. bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
  124. if (matrix_changed) {
  125. debouncing = true;
  126. debouncing_time = timer_read();
  127. PORTD ^= (1 << 2);
  128. }
  129. # else
  130. read_cols_on_row(matrix+offset, current_row);
  131. # endif
  132. }
  133. #elif (DIODE_DIRECTION == ROW2COL)
  134. // Set col, read rows
  135. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  136. # if (DEBOUNCING_DELAY > 0)
  137. bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
  138. if (matrix_changed) {
  139. debouncing = true;
  140. debouncing_time = timer_read();
  141. }
  142. # else
  143. read_rows_on_col(matrix+offset, current_col);
  144. # endif
  145. }
  146. #endif
  147. # if (DEBOUNCING_DELAY > 0)
  148. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
  149. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  150. matrix[i+offset] = matrix_debouncing[i+offset];
  151. }
  152. debouncing = false;
  153. }
  154. # endif
  155. return 1;
  156. }
  157. #ifdef USE_I2C
  158. // Get rows from other half over i2c
  159. int i2c_transaction(void) {
  160. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  161. int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  162. if (err) goto i2c_error;
  163. // start of matrix stored at 0x00
  164. err = i2c_master_write(0x00);
  165. if (err) goto i2c_error;
  166. // Start read
  167. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  168. if (err) goto i2c_error;
  169. if (!err) {
  170. int i;
  171. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  172. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  173. }
  174. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  175. i2c_master_stop();
  176. } else {
  177. i2c_error: // the cable is disconnceted, or something else went wrong
  178. i2c_reset_state();
  179. return err;
  180. }
  181. return 0;
  182. }
  183. #else // USE_SERIAL
  184. int serial_transaction(void) {
  185. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  186. if (serial_update_buffers()) {
  187. return 1;
  188. }
  189. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  190. matrix[slaveOffset+i] = serial_slave_buffer[i];
  191. }
  192. return 0;
  193. }
  194. #endif
  195. uint8_t matrix_scan(void)
  196. {
  197. uint8_t ret = _matrix_scan();
  198. #ifdef USE_I2C
  199. if( i2c_transaction() ) {
  200. #else // USE_SERIAL
  201. if( serial_transaction() ) {
  202. #endif
  203. // turn on the indicator led when halves are disconnected
  204. TXLED1;
  205. error_count++;
  206. if (error_count > ERROR_DISCONNECT_COUNT) {
  207. // reset other half if disconnected
  208. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  209. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  210. matrix[slaveOffset+i] = 0;
  211. }
  212. }
  213. } else {
  214. // turn off the indicator led on no error
  215. TXLED0;
  216. error_count = 0;
  217. }
  218. matrix_scan_quantum();
  219. return ret;
  220. }
  221. void matrix_slave_scan(void) {
  222. _matrix_scan();
  223. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  224. #ifdef USE_I2C
  225. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  226. i2c_slave_buffer[i] = matrix[offset+i];
  227. }
  228. #else // USE_SERIAL
  229. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  230. serial_slave_buffer[i] = matrix[offset+i];
  231. }
  232. #endif
  233. }
  234. bool matrix_is_modified(void)
  235. {
  236. if (debouncing) return false;
  237. return true;
  238. }
  239. inline
  240. bool matrix_is_on(uint8_t row, uint8_t col)
  241. {
  242. return (matrix[row] & ((matrix_row_t)1<<col));
  243. }
  244. inline
  245. matrix_row_t matrix_get_row(uint8_t row)
  246. {
  247. return matrix[row];
  248. }
  249. void matrix_print(void)
  250. {
  251. print("\nr/c 0123456789ABCDEF\n");
  252. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  253. phex(row); print(": ");
  254. pbin_reverse16(matrix_get_row(row));
  255. print("\n");
  256. }
  257. }
  258. uint8_t matrix_key_count(void)
  259. {
  260. uint8_t count = 0;
  261. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  262. count += bitpop16(matrix[i]);
  263. }
  264. return count;
  265. }
  266. #if (DIODE_DIRECTION == COL2ROW)
  267. static void init_cols(void)
  268. {
  269. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  270. uint8_t pin = col_pins[x];
  271. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  272. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  273. }
  274. }
  275. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
  276. {
  277. // Store last value of row prior to reading
  278. matrix_row_t last_row_value = current_matrix[current_row];
  279. // Clear data in matrix row
  280. current_matrix[current_row] = 0;
  281. // Select row and wait for row selecton to stabilize
  282. select_row(current_row);
  283. wait_us(30);
  284. // For each col...
  285. for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  286. // Select the col pin to read (active low)
  287. uint8_t pin = col_pins[col_index];
  288. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  289. // Populate the matrix row with the state of the col pin
  290. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  291. }
  292. // Unselect row
  293. unselect_row(current_row);
  294. return (last_row_value != current_matrix[current_row]);
  295. }
  296. static void select_row(uint8_t row)
  297. {
  298. uint8_t pin = row_pins[row];
  299. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  300. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  301. }
  302. static void unselect_row(uint8_t row)
  303. {
  304. uint8_t pin = row_pins[row];
  305. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  306. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  307. }
  308. static void unselect_rows(void)
  309. {
  310. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  311. uint8_t pin = row_pins[x];
  312. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  313. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  314. }
  315. }
  316. #elif (DIODE_DIRECTION == ROW2COL)
  317. static void init_rows(void)
  318. {
  319. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  320. uint8_t pin = row_pins[x];
  321. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  322. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  323. }
  324. }
  325. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  326. {
  327. bool matrix_changed = false;
  328. // Select col and wait for col selecton to stabilize
  329. select_col(current_col);
  330. wait_us(30);
  331. // For each row...
  332. for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
  333. {
  334. // Store last value of row prior to reading
  335. matrix_row_t last_row_value = current_matrix[row_index];
  336. // Check row pin state
  337. if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
  338. {
  339. // Pin LO, set col bit
  340. current_matrix[row_index] |= (ROW_SHIFTER << current_col);
  341. }
  342. else
  343. {
  344. // Pin HI, clear col bit
  345. current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
  346. }
  347. // Determine if the matrix changed state
  348. if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
  349. {
  350. matrix_changed = true;
  351. }
  352. }
  353. // Unselect col
  354. unselect_col(current_col);
  355. return matrix_changed;
  356. }
  357. static void select_col(uint8_t col)
  358. {
  359. uint8_t pin = col_pins[col];
  360. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  361. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  362. }
  363. static void unselect_col(uint8_t col)
  364. {
  365. uint8_t pin = col_pins[col];
  366. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  367. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  368. }
  369. static void unselect_cols(void)
  370. {
  371. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  372. uint8_t pin = col_pins[x];
  373. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  374. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  375. }
  376. }
  377. #endif