matrix.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <avr/io.h>
  20. #include <avr/wdt.h>
  21. #include <avr/interrupt.h>
  22. #include <util/delay.h>
  23. #include "print.h"
  24. #include "debug.h"
  25. #include "util.h"
  26. #include "matrix.h"
  27. #include "split_util.h"
  28. #include "pro_micro.h"
  29. #include "config.h"
  30. #ifdef USE_MATRIX_I2C
  31. # include "i2c.h"
  32. #else // USE_SERIAL
  33. # include "serial.h"
  34. #endif
  35. #ifndef DEBOUNCE
  36. # define DEBOUNCE 5
  37. #endif
  38. #define ERROR_DISCONNECT_COUNT 5
  39. static uint8_t debouncing = DEBOUNCE;
  40. static const int ROWS_PER_HAND = MATRIX_ROWS/2;
  41. static uint8_t error_count = 0;
  42. uint8_t is_master = 0 ;
  43. static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  44. static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  45. /* matrix state(1:on, 0:off) */
  46. static matrix_row_t matrix[MATRIX_ROWS];
  47. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  48. static matrix_row_t read_cols(void);
  49. static void init_cols(void);
  50. static void unselect_rows(void);
  51. static void select_row(uint8_t row);
  52. static uint8_t matrix_master_scan(void);
  53. __attribute__ ((weak))
  54. void matrix_init_kb(void) {
  55. matrix_init_user();
  56. }
  57. __attribute__ ((weak))
  58. void matrix_scan_kb(void) {
  59. matrix_scan_user();
  60. }
  61. __attribute__ ((weak))
  62. void matrix_init_user(void) {
  63. }
  64. __attribute__ ((weak))
  65. void matrix_scan_user(void) {
  66. }
  67. inline
  68. uint8_t matrix_rows(void)
  69. {
  70. return MATRIX_ROWS;
  71. }
  72. inline
  73. uint8_t matrix_cols(void)
  74. {
  75. return MATRIX_COLS;
  76. }
  77. void matrix_init(void)
  78. {
  79. debug_enable = true;
  80. debug_matrix = true;
  81. debug_mouse = true;
  82. // initialize row and col
  83. unselect_rows();
  84. init_cols();
  85. TX_RX_LED_INIT;
  86. // initialize matrix state: all keys off
  87. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  88. matrix[i] = 0;
  89. matrix_debouncing[i] = 0;
  90. }
  91. is_master = has_usb();
  92. matrix_init_quantum();
  93. }
  94. uint8_t _matrix_scan(void)
  95. {
  96. // Right hand is stored after the left in the matirx so, we need to offset it
  97. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  98. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  99. select_row(i);
  100. _delay_us(30); // without this wait read unstable value.
  101. matrix_row_t cols = read_cols();
  102. if (matrix_debouncing[i+offset] != cols) {
  103. matrix_debouncing[i+offset] = cols;
  104. debouncing = DEBOUNCE;
  105. }
  106. unselect_rows();
  107. }
  108. if (debouncing) {
  109. if (--debouncing) {
  110. _delay_ms(1);
  111. } else {
  112. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  113. matrix[i+offset] = matrix_debouncing[i+offset];
  114. }
  115. }
  116. }
  117. return 1;
  118. }
  119. #ifdef USE_MATRIX_I2C
  120. // Get rows from other half over i2c
  121. int i2c_transaction(void) {
  122. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  123. int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  124. if (err) goto i2c_error;
  125. // start of matrix stored at 0x00
  126. err = i2c_master_write(0x00);
  127. if (err) goto i2c_error;
  128. // Start read
  129. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  130. if (err) goto i2c_error;
  131. if (!err) {
  132. int i;
  133. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  134. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  135. }
  136. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  137. i2c_master_stop();
  138. } else {
  139. i2c_error: // the cable is disconnceted, or something else went wrong
  140. i2c_reset_state();
  141. return err;
  142. }
  143. return 0;
  144. }
  145. #else // USE_SERIAL
  146. int serial_transaction(void) {
  147. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  148. int ret=serial_update_buffers();
  149. if (ret ) {
  150. if(ret==2)RXLED1;
  151. return 1;
  152. }
  153. RXLED0;
  154. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  155. matrix[slaveOffset+i] = serial_slave_buffer[i];
  156. }
  157. return 0;
  158. }
  159. #endif
  160. uint8_t matrix_scan(void)
  161. {
  162. if (is_master) {
  163. matrix_master_scan();
  164. }else{
  165. matrix_slave_scan();
  166. // if(serial_slave_DATA_CORRUPT()){
  167. // TXLED0;
  168. int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
  169. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  170. matrix[offset+i] = serial_master_buffer[i];
  171. }
  172. // }else{
  173. // TXLED1;
  174. // }
  175. matrix_scan_quantum();
  176. }
  177. return 1;
  178. }
  179. uint8_t matrix_master_scan(void) {
  180. int ret = _matrix_scan();
  181. #ifndef KEYBOARD_helix_rev1
  182. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  183. #ifdef USE_MATRIX_I2C
  184. // for (int i = 0; i < ROWS_PER_HAND; ++i) {
  185. /* i2c_slave_buffer[i] = matrix[offset+i]; */
  186. // i2c_slave_buffer[i] = matrix[offset+i];
  187. // }
  188. #else // USE_SERIAL
  189. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  190. serial_master_buffer[i] = matrix[offset+i];
  191. }
  192. #endif
  193. #endif
  194. #ifdef USE_MATRIX_I2C
  195. if( i2c_transaction() ) {
  196. #else // USE_SERIAL
  197. if( serial_transaction() ) {
  198. #endif
  199. // turn on the indicator led when halves are disconnected
  200. TXLED1;
  201. error_count++;
  202. if (error_count > ERROR_DISCONNECT_COUNT) {
  203. // reset other half if disconnected
  204. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  205. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  206. matrix[slaveOffset+i] = 0;
  207. }
  208. }
  209. } else {
  210. // turn off the indicator led on no error
  211. TXLED0;
  212. error_count = 0;
  213. }
  214. matrix_scan_quantum();
  215. return ret;
  216. }
  217. void matrix_slave_scan(void) {
  218. _matrix_scan();
  219. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  220. #ifdef USE_MATRIX_I2C
  221. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  222. /* i2c_slave_buffer[i] = matrix[offset+i]; */
  223. i2c_slave_buffer[i] = matrix[offset+i];
  224. }
  225. #else // USE_SERIAL
  226. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  227. serial_slave_buffer[i] = matrix[offset+i];
  228. }
  229. #endif
  230. }
  231. bool matrix_is_modified(void)
  232. {
  233. if (debouncing) return false;
  234. return true;
  235. }
  236. inline
  237. bool matrix_is_on(uint8_t row, uint8_t col)
  238. {
  239. return (matrix[row] & ((matrix_row_t)1<<col));
  240. }
  241. inline
  242. matrix_row_t matrix_get_row(uint8_t row)
  243. {
  244. return matrix[row];
  245. }
  246. void matrix_print(void)
  247. {
  248. print("\nr/c 0123456789ABCDEF\n");
  249. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  250. phex(row); print(": ");
  251. pbin_reverse16(matrix_get_row(row));
  252. print("\n");
  253. }
  254. }
  255. uint8_t matrix_key_count(void)
  256. {
  257. uint8_t count = 0;
  258. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  259. count += bitpop16(matrix[i]);
  260. }
  261. return count;
  262. }
  263. static void init_cols(void)
  264. {
  265. for(int x = 0; x < MATRIX_COLS; x++) {
  266. _SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
  267. _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
  268. }
  269. }
  270. static matrix_row_t read_cols(void)
  271. {
  272. matrix_row_t result = 0;
  273. for(int x = 0; x < MATRIX_COLS; x++) {
  274. result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
  275. }
  276. return result;
  277. }
  278. static void unselect_rows(void)
  279. {
  280. for(int x = 0; x < ROWS_PER_HAND; x++) {
  281. _SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
  282. _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
  283. }
  284. }
  285. static void select_row(uint8_t row)
  286. {
  287. _SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
  288. _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
  289. }