matrix.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. Copyright 2012 Jun Wako <wakojun@gmail.com>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. /*
  15. * scan matrix
  16. */
  17. #include <stdint.h>
  18. #include <stdbool.h>
  19. #include <avr/io.h>
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "split_util.h"
  26. #include "pro_micro.h"
  27. #include "config.h"
  28. #include "timer.h"
  29. #include "split_flags.h"
  30. #ifdef RGBLIGHT_ENABLE
  31. # include "rgblight.h"
  32. #endif
  33. #ifdef BACKLIGHT_ENABLE
  34. # include "backlight.h"
  35. extern backlight_config_t backlight_config;
  36. #endif
  37. #if defined(USE_I2C) || defined(EH)
  38. # include "i2c.h"
  39. #else // USE_SERIAL
  40. # include "serial.h"
  41. #endif
  42. #ifndef DEBOUNCING_DELAY
  43. # define DEBOUNCING_DELAY 5
  44. #endif
  45. #if (DEBOUNCING_DELAY > 0)
  46. static uint16_t debouncing_time;
  47. static bool debouncing = false;
  48. #endif
  49. #if (MATRIX_COLS <= 8)
  50. # define print_matrix_header() print("\nr/c 01234567\n")
  51. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  52. # define matrix_bitpop(i) bitpop(matrix[i])
  53. # define ROW_SHIFTER ((uint8_t)1)
  54. #else
  55. # error "Currently only supports 8 COLS"
  56. #endif
  57. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  58. #define ERROR_DISCONNECT_COUNT 5
  59. #define ROWS_PER_HAND (MATRIX_ROWS/2)
  60. static uint8_t error_count = 0;
  61. static uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  62. static uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  63. /* matrix state(1:on, 0:off) */
  64. static matrix_row_t matrix[MATRIX_ROWS];
  65. static matrix_row_t matrix_debouncing[MATRIX_ROWS];
  66. #if (DIODE_DIRECTION == COL2ROW)
  67. static void init_cols(void);
  68. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
  69. static void unselect_rows(void);
  70. static void select_row(uint8_t row);
  71. static void unselect_row(uint8_t row);
  72. #elif (DIODE_DIRECTION == ROW2COL)
  73. static void init_rows(void);
  74. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
  75. static void unselect_cols(void);
  76. static void unselect_col(uint8_t col);
  77. static void select_col(uint8_t col);
  78. #endif
  79. __attribute__ ((weak))
  80. void matrix_init_kb(void) {
  81. matrix_init_user();
  82. }
  83. __attribute__ ((weak))
  84. void matrix_scan_kb(void) {
  85. matrix_scan_user();
  86. }
  87. __attribute__ ((weak))
  88. void matrix_init_user(void) {
  89. }
  90. __attribute__ ((weak))
  91. void matrix_scan_user(void) {
  92. }
  93. __attribute__ ((weak))
  94. void matrix_slave_scan_user(void) {
  95. }
  96. inline
  97. uint8_t matrix_rows(void)
  98. {
  99. return MATRIX_ROWS;
  100. }
  101. inline
  102. uint8_t matrix_cols(void)
  103. {
  104. return MATRIX_COLS;
  105. }
  106. void matrix_init(void)
  107. {
  108. debug_enable = true;
  109. debug_matrix = true;
  110. debug_mouse = true;
  111. // Set pinout for right half if pinout for that half is defined
  112. if (!isLeftHand) {
  113. #ifdef MATRIX_ROW_PINS_RIGHT
  114. const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
  115. for (uint8_t i = 0; i < MATRIX_ROWS; i++)
  116. row_pins[i] = row_pins_right[i];
  117. #endif
  118. #ifdef MATRIX_COL_PINS_RIGHT
  119. const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
  120. for (uint8_t i = 0; i < MATRIX_COLS; i++)
  121. col_pins[i] = col_pins_right[i];
  122. #endif
  123. }
  124. // initialize row and col
  125. #if (DIODE_DIRECTION == COL2ROW)
  126. unselect_rows();
  127. init_cols();
  128. #elif (DIODE_DIRECTION == ROW2COL)
  129. unselect_cols();
  130. init_rows();
  131. #endif
  132. // initialize matrix state: all keys off
  133. for (uint8_t i=0; i < MATRIX_ROWS; i++) {
  134. matrix[i] = 0;
  135. matrix_debouncing[i] = 0;
  136. }
  137. matrix_init_quantum();
  138. }
  139. uint8_t _matrix_scan(void)
  140. {
  141. int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
  142. #if (DIODE_DIRECTION == COL2ROW)
  143. // Set row, read cols
  144. for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
  145. # if (DEBOUNCING_DELAY > 0)
  146. bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
  147. if (matrix_changed) {
  148. debouncing = true;
  149. debouncing_time = timer_read();
  150. }
  151. # else
  152. read_cols_on_row(matrix+offset, current_row);
  153. # endif
  154. }
  155. #elif (DIODE_DIRECTION == ROW2COL)
  156. // Set col, read rows
  157. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  158. # if (DEBOUNCING_DELAY > 0)
  159. bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
  160. if (matrix_changed) {
  161. debouncing = true;
  162. debouncing_time = timer_read();
  163. }
  164. # else
  165. read_rows_on_col(matrix+offset, current_col);
  166. # endif
  167. }
  168. #endif
  169. # if (DEBOUNCING_DELAY > 0)
  170. if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
  171. for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
  172. matrix[i+offset] = matrix_debouncing[i+offset];
  173. }
  174. debouncing = false;
  175. }
  176. # endif
  177. return 1;
  178. }
  179. #if defined(USE_I2C) || defined(EH)
  180. // Get rows from other half over i2c
  181. int i2c_transaction(void) {
  182. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  183. int err = 0;
  184. // write backlight info
  185. #ifdef BACKLIGHT_ENABLE
  186. if (BACKLIT_DIRTY) {
  187. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  188. if (err) goto i2c_error;
  189. // Backlight location
  190. err = i2c_master_write(I2C_BACKLIT_START);
  191. if (err) goto i2c_error;
  192. // Write backlight
  193. i2c_master_write(get_backlight_level());
  194. BACKLIT_DIRTY = false;
  195. }
  196. #endif
  197. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  198. if (err) goto i2c_error;
  199. // start of matrix stored at I2C_KEYMAP_START
  200. err = i2c_master_write(I2C_KEYMAP_START);
  201. if (err) goto i2c_error;
  202. // Start read
  203. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  204. if (err) goto i2c_error;
  205. if (!err) {
  206. int i;
  207. for (i = 0; i < ROWS_PER_HAND-1; ++i) {
  208. matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
  209. }
  210. matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
  211. i2c_master_stop();
  212. } else {
  213. i2c_error: // the cable is disconnceted, or something else went wrong
  214. i2c_reset_state();
  215. return err;
  216. }
  217. #ifdef RGBLIGHT_ENABLE
  218. if (RGB_DIRTY) {
  219. err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  220. if (err) goto i2c_error;
  221. // RGB Location
  222. err = i2c_master_write(I2C_RGB_START);
  223. if (err) goto i2c_error;
  224. uint32_t dword = eeconfig_read_rgblight();
  225. // Write RGB
  226. err = i2c_master_write_data(&dword, 4);
  227. if (err) goto i2c_error;
  228. RGB_DIRTY = false;
  229. i2c_master_stop();
  230. }
  231. #endif
  232. return 0;
  233. }
  234. #else // USE_SERIAL
  235. int serial_transaction(void) {
  236. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  237. if (serial_update_buffers()) {
  238. return 1;
  239. }
  240. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  241. matrix[slaveOffset+i] = serial_slave_buffer[i];
  242. }
  243. #ifdef RGBLIGHT_ENABLE
  244. // Code to send RGB over serial goes here (not implemented yet)
  245. #endif
  246. #ifdef BACKLIGHT_ENABLE
  247. // Write backlight level for slave to read
  248. serial_master_buffer[SERIAL_BACKLIT_START] = backlight_config.enable ? backlight_config.level : 0;
  249. #endif
  250. return 0;
  251. }
  252. #endif
  253. uint8_t matrix_scan(void)
  254. {
  255. uint8_t ret = _matrix_scan();
  256. #if defined(USE_I2C) || defined(EH)
  257. if( i2c_transaction() ) {
  258. #else // USE_SERIAL
  259. if( serial_transaction() ) {
  260. #endif
  261. error_count++;
  262. if (error_count > ERROR_DISCONNECT_COUNT) {
  263. // reset other half if disconnected
  264. int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
  265. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  266. matrix[slaveOffset+i] = 0;
  267. }
  268. }
  269. } else {
  270. error_count = 0;
  271. }
  272. matrix_scan_quantum();
  273. return ret;
  274. }
  275. void matrix_slave_scan(void) {
  276. _matrix_scan();
  277. int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
  278. #if defined(USE_I2C) || defined(EH)
  279. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  280. i2c_slave_buffer[I2C_KEYMAP_START+i] = matrix[offset+i];
  281. }
  282. #else // USE_SERIAL
  283. for (int i = 0; i < ROWS_PER_HAND; ++i) {
  284. serial_slave_buffer[i] = matrix[offset+i];
  285. }
  286. #endif
  287. matrix_slave_scan_user();
  288. }
  289. bool matrix_is_modified(void)
  290. {
  291. if (debouncing) return false;
  292. return true;
  293. }
  294. inline
  295. bool matrix_is_on(uint8_t row, uint8_t col)
  296. {
  297. return (matrix[row] & ((matrix_row_t)1<<col));
  298. }
  299. inline
  300. matrix_row_t matrix_get_row(uint8_t row)
  301. {
  302. return matrix[row];
  303. }
  304. void matrix_print(void)
  305. {
  306. print("\nr/c 0123456789ABCDEF\n");
  307. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  308. phex(row); print(": ");
  309. pbin_reverse16(matrix_get_row(row));
  310. print("\n");
  311. }
  312. }
  313. uint8_t matrix_key_count(void)
  314. {
  315. uint8_t count = 0;
  316. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  317. count += bitpop16(matrix[i]);
  318. }
  319. return count;
  320. }
  321. #if (DIODE_DIRECTION == COL2ROW)
  322. static void init_cols(void)
  323. {
  324. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  325. uint8_t pin = col_pins[x];
  326. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  327. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  328. }
  329. }
  330. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
  331. {
  332. // Store last value of row prior to reading
  333. matrix_row_t last_row_value = current_matrix[current_row];
  334. // Clear data in matrix row
  335. current_matrix[current_row] = 0;
  336. // Select row and wait for row selecton to stabilize
  337. select_row(current_row);
  338. wait_us(30);
  339. // For each col...
  340. for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  341. // Select the col pin to read (active low)
  342. uint8_t pin = col_pins[col_index];
  343. uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
  344. // Populate the matrix row with the state of the col pin
  345. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  346. }
  347. // Unselect row
  348. unselect_row(current_row);
  349. return (last_row_value != current_matrix[current_row]);
  350. }
  351. static void select_row(uint8_t row)
  352. {
  353. uint8_t pin = row_pins[row];
  354. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  355. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  356. }
  357. static void unselect_row(uint8_t row)
  358. {
  359. uint8_t pin = row_pins[row];
  360. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  361. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  362. }
  363. static void unselect_rows(void)
  364. {
  365. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  366. uint8_t pin = row_pins[x];
  367. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  368. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  369. }
  370. }
  371. #elif (DIODE_DIRECTION == ROW2COL)
  372. static void init_rows(void)
  373. {
  374. for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
  375. uint8_t pin = row_pins[x];
  376. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  377. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  378. }
  379. }
  380. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
  381. {
  382. bool matrix_changed = false;
  383. // Select col and wait for col selecton to stabilize
  384. select_col(current_col);
  385. wait_us(30);
  386. // For each row...
  387. for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
  388. {
  389. // Store last value of row prior to reading
  390. matrix_row_t last_row_value = current_matrix[row_index];
  391. // Check row pin state
  392. if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
  393. {
  394. // Pin LO, set col bit
  395. current_matrix[row_index] |= (ROW_SHIFTER << current_col);
  396. }
  397. else
  398. {
  399. // Pin HI, clear col bit
  400. current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
  401. }
  402. // Determine if the matrix changed state
  403. if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
  404. {
  405. matrix_changed = true;
  406. }
  407. }
  408. // Unselect col
  409. unselect_col(current_col);
  410. return matrix_changed;
  411. }
  412. static void select_col(uint8_t col)
  413. {
  414. uint8_t pin = col_pins[col];
  415. _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
  416. _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
  417. }
  418. static void unselect_col(uint8_t col)
  419. {
  420. uint8_t pin = col_pins[col];
  421. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  422. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  423. }
  424. static void unselect_cols(void)
  425. {
  426. for(uint8_t x = 0; x < MATRIX_COLS; x++) {
  427. uint8_t pin = col_pins[x];
  428. _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
  429. _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
  430. }
  431. }
  432. #endif