quantum.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #ifdef PROTOCOL_LUFA
  18. #include "outputselect.h"
  19. #endif
  20. #ifndef TAPPING_TERM
  21. #define TAPPING_TERM 200
  22. #endif
  23. #include "backlight.h"
  24. extern backlight_config_t backlight_config;
  25. #ifdef FAUXCLICKY_ENABLE
  26. #include "fauxclicky.h"
  27. #endif
  28. #ifdef AUDIO_ENABLE
  29. #ifndef GOODBYE_SONG
  30. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  31. #endif
  32. #ifndef AG_NORM_SONG
  33. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  34. #endif
  35. #ifndef AG_SWAP_SONG
  36. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  37. #endif
  38. float goodbye_song[][2] = GOODBYE_SONG;
  39. float ag_norm_song[][2] = AG_NORM_SONG;
  40. float ag_swap_song[][2] = AG_SWAP_SONG;
  41. #ifdef DEFAULT_LAYER_SONGS
  42. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  43. #endif
  44. #endif
  45. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  46. switch (code) {
  47. case QK_MODS ... QK_MODS_MAX:
  48. break;
  49. default:
  50. return;
  51. }
  52. if (code & QK_LCTL)
  53. f(KC_LCTL);
  54. if (code & QK_LSFT)
  55. f(KC_LSFT);
  56. if (code & QK_LALT)
  57. f(KC_LALT);
  58. if (code & QK_LGUI)
  59. f(KC_LGUI);
  60. if (code < QK_RMODS_MIN) return;
  61. if (code & QK_RCTL)
  62. f(KC_RCTL);
  63. if (code & QK_RSFT)
  64. f(KC_RSFT);
  65. if (code & QK_RALT)
  66. f(KC_RALT);
  67. if (code & QK_RGUI)
  68. f(KC_RGUI);
  69. }
  70. static inline void qk_register_weak_mods(uint8_t kc) {
  71. add_weak_mods(MOD_BIT(kc));
  72. send_keyboard_report();
  73. }
  74. static inline void qk_unregister_weak_mods(uint8_t kc) {
  75. del_weak_mods(MOD_BIT(kc));
  76. send_keyboard_report();
  77. }
  78. static inline void qk_register_mods(uint8_t kc) {
  79. add_weak_mods(MOD_BIT(kc));
  80. send_keyboard_report();
  81. }
  82. static inline void qk_unregister_mods(uint8_t kc) {
  83. del_weak_mods(MOD_BIT(kc));
  84. send_keyboard_report();
  85. }
  86. void register_code16 (uint16_t code) {
  87. if (IS_MOD(code) || code == KC_NO) {
  88. do_code16 (code, qk_register_mods);
  89. } else {
  90. do_code16 (code, qk_register_weak_mods);
  91. }
  92. register_code (code);
  93. }
  94. void unregister_code16 (uint16_t code) {
  95. unregister_code (code);
  96. if (IS_MOD(code) || code == KC_NO) {
  97. do_code16 (code, qk_unregister_mods);
  98. } else {
  99. do_code16 (code, qk_unregister_weak_mods);
  100. }
  101. }
  102. __attribute__ ((weak))
  103. bool process_action_kb(keyrecord_t *record) {
  104. return true;
  105. }
  106. __attribute__ ((weak))
  107. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  108. return process_record_user(keycode, record);
  109. }
  110. __attribute__ ((weak))
  111. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  112. return true;
  113. }
  114. void reset_keyboard(void) {
  115. clear_keyboard();
  116. #if defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_ENABLE_BASIC))
  117. music_all_notes_off();
  118. uint16_t timer_start = timer_read();
  119. PLAY_SONG(goodbye_song);
  120. shutdown_user();
  121. while(timer_elapsed(timer_start) < 250)
  122. wait_ms(1);
  123. stop_all_notes();
  124. #else
  125. wait_ms(250);
  126. #endif
  127. #ifdef CATERINA_BOOTLOADER
  128. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  129. #endif
  130. bootloader_jump();
  131. }
  132. // Shift / paren setup
  133. #ifndef LSPO_KEY
  134. #define LSPO_KEY KC_9
  135. #endif
  136. #ifndef RSPC_KEY
  137. #define RSPC_KEY KC_0
  138. #endif
  139. static bool shift_interrupted[2] = {0, 0};
  140. static uint16_t scs_timer[2] = {0, 0};
  141. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  142. * Used to ensure that the correct keycode is released if the key is released.
  143. */
  144. static bool grave_esc_was_shifted = false;
  145. bool process_record_quantum(keyrecord_t *record) {
  146. /* This gets the keycode from the key pressed */
  147. keypos_t key = record->event.key;
  148. uint16_t keycode;
  149. #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
  150. /* TODO: Use store_or_get_action() or a similar function. */
  151. if (!disable_action_cache) {
  152. uint8_t layer;
  153. if (record->event.pressed) {
  154. layer = layer_switch_get_layer(key);
  155. update_source_layers_cache(key, layer);
  156. } else {
  157. layer = read_source_layers_cache(key);
  158. }
  159. keycode = keymap_key_to_keycode(layer, key);
  160. } else
  161. #endif
  162. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  163. // This is how you use actions here
  164. // if (keycode == KC_LEAD) {
  165. // action_t action;
  166. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  167. // process_action(record, action);
  168. // return false;
  169. // }
  170. if (!(
  171. #if defined(KEY_LOCK_ENABLE)
  172. // Must run first to be able to mask key_up events.
  173. process_key_lock(&keycode, record) &&
  174. #endif
  175. process_record_kb(keycode, record) &&
  176. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  177. process_midi(keycode, record) &&
  178. #endif
  179. #ifdef AUDIO_ENABLE
  180. process_audio(keycode, record) &&
  181. #endif
  182. #ifdef STENO_ENABLE
  183. process_steno(keycode, record) &&
  184. #endif
  185. #if defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))
  186. process_music(keycode, record) &&
  187. #endif
  188. #ifdef TAP_DANCE_ENABLE
  189. process_tap_dance(keycode, record) &&
  190. #endif
  191. #ifndef DISABLE_LEADER
  192. process_leader(keycode, record) &&
  193. #endif
  194. #ifndef DISABLE_CHORDING
  195. process_chording(keycode, record) &&
  196. #endif
  197. #ifdef COMBO_ENABLE
  198. process_combo(keycode, record) &&
  199. #endif
  200. #ifdef UNICODE_ENABLE
  201. process_unicode(keycode, record) &&
  202. #endif
  203. #ifdef UCIS_ENABLE
  204. process_ucis(keycode, record) &&
  205. #endif
  206. #ifdef PRINTING_ENABLE
  207. process_printer(keycode, record) &&
  208. #endif
  209. #ifdef AUTO_SHIFT_ENABLE
  210. process_auto_shift(keycode, record) &&
  211. #endif
  212. #ifdef UNICODEMAP_ENABLE
  213. process_unicode_map(keycode, record) &&
  214. #endif
  215. #ifdef TERMINAL_ENABLE
  216. process_terminal(keycode, record) &&
  217. #endif
  218. true)) {
  219. return false;
  220. }
  221. // Shift / paren setup
  222. switch(keycode) {
  223. case RESET:
  224. if (record->event.pressed) {
  225. reset_keyboard();
  226. }
  227. return false;
  228. case DEBUG:
  229. if (record->event.pressed) {
  230. debug_enable = true;
  231. print("DEBUG: enabled.\n");
  232. }
  233. return false;
  234. #ifdef FAUXCLICKY_ENABLE
  235. case FC_TOG:
  236. if (record->event.pressed) {
  237. FAUXCLICKY_TOGGLE;
  238. }
  239. return false;
  240. case FC_ON:
  241. if (record->event.pressed) {
  242. FAUXCLICKY_ON;
  243. }
  244. return false;
  245. case FC_OFF:
  246. if (record->event.pressed) {
  247. FAUXCLICKY_OFF;
  248. }
  249. return false;
  250. #endif
  251. #ifdef RGBLIGHT_ENABLE
  252. case RGB_TOG:
  253. if (record->event.pressed) {
  254. rgblight_toggle();
  255. }
  256. return false;
  257. case RGB_MOD:
  258. if (record->event.pressed) {
  259. rgblight_step();
  260. }
  261. return false;
  262. case RGB_SMOD:
  263. // same as RBG_MOD, but if shift is pressed, it will use the reverese direction instead.
  264. if (record->event.pressed) {
  265. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  266. if(shifted) {
  267. rgblight_step_reverse();
  268. }
  269. else {
  270. rgblight_step();
  271. }
  272. }
  273. return false;
  274. case RGB_HUI:
  275. if (record->event.pressed) {
  276. rgblight_increase_hue();
  277. }
  278. return false;
  279. case RGB_HUD:
  280. if (record->event.pressed) {
  281. rgblight_decrease_hue();
  282. }
  283. return false;
  284. case RGB_SAI:
  285. if (record->event.pressed) {
  286. rgblight_increase_sat();
  287. }
  288. return false;
  289. case RGB_SAD:
  290. if (record->event.pressed) {
  291. rgblight_decrease_sat();
  292. }
  293. return false;
  294. case RGB_VAI:
  295. if (record->event.pressed) {
  296. rgblight_increase_val();
  297. }
  298. return false;
  299. case RGB_VAD:
  300. if (record->event.pressed) {
  301. rgblight_decrease_val();
  302. }
  303. return false;
  304. case RGB_MODE_PLAIN:
  305. if (record->event.pressed) {
  306. rgblight_mode(1);
  307. }
  308. return false;
  309. case RGB_MODE_BREATHE:
  310. if (record->event.pressed) {
  311. if ((2 <= rgblight_get_mode()) && (rgblight_get_mode() < 5)) {
  312. rgblight_step();
  313. } else {
  314. rgblight_mode(2);
  315. }
  316. }
  317. return false;
  318. case RGB_MODE_RAINBOW:
  319. if (record->event.pressed) {
  320. if ((6 <= rgblight_get_mode()) && (rgblight_get_mode() < 8)) {
  321. rgblight_step();
  322. } else {
  323. rgblight_mode(6);
  324. }
  325. }
  326. return false;
  327. case RGB_MODE_SWIRL:
  328. if (record->event.pressed) {
  329. if ((9 <= rgblight_get_mode()) && (rgblight_get_mode() < 14)) {
  330. rgblight_step();
  331. } else {
  332. rgblight_mode(9);
  333. }
  334. }
  335. return false;
  336. case RGB_MODE_SNAKE:
  337. if (record->event.pressed) {
  338. if ((15 <= rgblight_get_mode()) && (rgblight_get_mode() < 20)) {
  339. rgblight_step();
  340. } else {
  341. rgblight_mode(15);
  342. }
  343. }
  344. return false;
  345. case RGB_MODE_KNIGHT:
  346. if (record->event.pressed) {
  347. if ((21 <= rgblight_get_mode()) && (rgblight_get_mode() < 23)) {
  348. rgblight_step();
  349. } else {
  350. rgblight_mode(21);
  351. }
  352. }
  353. return false;
  354. case RGB_MODE_XMAS:
  355. if (record->event.pressed) {
  356. rgblight_mode(24);
  357. }
  358. return false;
  359. case RGB_MODE_GRADIENT:
  360. if (record->event.pressed) {
  361. if ((25 <= rgblight_get_mode()) && (rgblight_get_mode() < 34)) {
  362. rgblight_step();
  363. } else {
  364. rgblight_mode(25);
  365. }
  366. }
  367. return false;
  368. #endif
  369. #ifdef PROTOCOL_LUFA
  370. case OUT_AUTO:
  371. if (record->event.pressed) {
  372. set_output(OUTPUT_AUTO);
  373. }
  374. return false;
  375. case OUT_USB:
  376. if (record->event.pressed) {
  377. set_output(OUTPUT_USB);
  378. }
  379. return false;
  380. #ifdef BLUETOOTH_ENABLE
  381. case OUT_BT:
  382. if (record->event.pressed) {
  383. set_output(OUTPUT_BLUETOOTH);
  384. }
  385. return false;
  386. #endif
  387. #endif
  388. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  389. if (record->event.pressed) {
  390. // MAGIC actions (BOOTMAGIC without the boot)
  391. if (!eeconfig_is_enabled()) {
  392. eeconfig_init();
  393. }
  394. /* keymap config */
  395. keymap_config.raw = eeconfig_read_keymap();
  396. switch (keycode)
  397. {
  398. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  399. keymap_config.swap_control_capslock = true;
  400. break;
  401. case MAGIC_CAPSLOCK_TO_CONTROL:
  402. keymap_config.capslock_to_control = true;
  403. break;
  404. case MAGIC_SWAP_LALT_LGUI:
  405. keymap_config.swap_lalt_lgui = true;
  406. break;
  407. case MAGIC_SWAP_RALT_RGUI:
  408. keymap_config.swap_ralt_rgui = true;
  409. break;
  410. case MAGIC_NO_GUI:
  411. keymap_config.no_gui = true;
  412. break;
  413. case MAGIC_SWAP_GRAVE_ESC:
  414. keymap_config.swap_grave_esc = true;
  415. break;
  416. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  417. keymap_config.swap_backslash_backspace = true;
  418. break;
  419. case MAGIC_HOST_NKRO:
  420. keymap_config.nkro = true;
  421. break;
  422. case MAGIC_SWAP_ALT_GUI:
  423. keymap_config.swap_lalt_lgui = true;
  424. keymap_config.swap_ralt_rgui = true;
  425. #ifdef AUDIO_ENABLE
  426. PLAY_SONG(ag_swap_song);
  427. #endif
  428. break;
  429. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  430. keymap_config.swap_control_capslock = false;
  431. break;
  432. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  433. keymap_config.capslock_to_control = false;
  434. break;
  435. case MAGIC_UNSWAP_LALT_LGUI:
  436. keymap_config.swap_lalt_lgui = false;
  437. break;
  438. case MAGIC_UNSWAP_RALT_RGUI:
  439. keymap_config.swap_ralt_rgui = false;
  440. break;
  441. case MAGIC_UNNO_GUI:
  442. keymap_config.no_gui = false;
  443. break;
  444. case MAGIC_UNSWAP_GRAVE_ESC:
  445. keymap_config.swap_grave_esc = false;
  446. break;
  447. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  448. keymap_config.swap_backslash_backspace = false;
  449. break;
  450. case MAGIC_UNHOST_NKRO:
  451. keymap_config.nkro = false;
  452. break;
  453. case MAGIC_UNSWAP_ALT_GUI:
  454. keymap_config.swap_lalt_lgui = false;
  455. keymap_config.swap_ralt_rgui = false;
  456. #ifdef AUDIO_ENABLE
  457. PLAY_SONG(ag_norm_song);
  458. #endif
  459. break;
  460. case MAGIC_TOGGLE_NKRO:
  461. keymap_config.nkro = !keymap_config.nkro;
  462. break;
  463. default:
  464. break;
  465. }
  466. eeconfig_update_keymap(keymap_config.raw);
  467. clear_keyboard(); // clear to prevent stuck keys
  468. return false;
  469. }
  470. break;
  471. case KC_LSPO: {
  472. if (record->event.pressed) {
  473. shift_interrupted[0] = false;
  474. scs_timer[0] = timer_read ();
  475. register_mods(MOD_BIT(KC_LSFT));
  476. }
  477. else {
  478. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  479. if (get_mods() & MOD_BIT(KC_RSFT)) {
  480. shift_interrupted[0] = true;
  481. shift_interrupted[1] = true;
  482. }
  483. #endif
  484. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  485. register_code(LSPO_KEY);
  486. unregister_code(LSPO_KEY);
  487. }
  488. unregister_mods(MOD_BIT(KC_LSFT));
  489. }
  490. return false;
  491. }
  492. case KC_RSPC: {
  493. if (record->event.pressed) {
  494. shift_interrupted[1] = false;
  495. scs_timer[1] = timer_read ();
  496. register_mods(MOD_BIT(KC_RSFT));
  497. }
  498. else {
  499. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  500. if (get_mods() & MOD_BIT(KC_LSFT)) {
  501. shift_interrupted[0] = true;
  502. shift_interrupted[1] = true;
  503. }
  504. #endif
  505. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  506. register_code(RSPC_KEY);
  507. unregister_code(RSPC_KEY);
  508. }
  509. unregister_mods(MOD_BIT(KC_RSFT));
  510. }
  511. return false;
  512. }
  513. case GRAVE_ESC: {
  514. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  515. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  516. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  517. // if CTRL is pressed, ESC is always read as ESC, even if SHIFT or GUI is pressed.
  518. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  519. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL)))
  520. shifted = 0;
  521. #endif
  522. if (record->event.pressed) {
  523. grave_esc_was_shifted = shifted;
  524. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  525. }
  526. else {
  527. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  528. }
  529. send_keyboard_report();
  530. }
  531. default: {
  532. shift_interrupted[0] = true;
  533. shift_interrupted[1] = true;
  534. break;
  535. }
  536. }
  537. return process_action_kb(record);
  538. }
  539. __attribute__ ((weak))
  540. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  541. 0, 0, 0, 0, 0, 0, 0, 0,
  542. 0, 0, 0, 0, 0, 0, 0, 0,
  543. 0, 0, 0, 0, 0, 0, 0, 0,
  544. 0, 0, 0, 0, 0, 0, 0, 0,
  545. 0, 1, 1, 1, 1, 1, 1, 0,
  546. 1, 1, 1, 1, 0, 0, 0, 0,
  547. 0, 0, 0, 0, 0, 0, 0, 0,
  548. 0, 0, 1, 0, 1, 0, 1, 1,
  549. 1, 1, 1, 1, 1, 1, 1, 1,
  550. 1, 1, 1, 1, 1, 1, 1, 1,
  551. 1, 1, 1, 1, 1, 1, 1, 1,
  552. 1, 1, 1, 0, 0, 0, 1, 1,
  553. 0, 0, 0, 0, 0, 0, 0, 0,
  554. 0, 0, 0, 0, 0, 0, 0, 0,
  555. 0, 0, 0, 0, 0, 0, 0, 0,
  556. 0, 0, 0, 1, 1, 1, 1, 0
  557. };
  558. __attribute__ ((weak))
  559. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  560. 0, 0, 0, 0, 0, 0, 0, 0,
  561. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  562. 0, 0, 0, 0, 0, 0, 0, 0,
  563. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  564. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  565. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  566. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  567. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  568. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  569. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  570. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  571. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  572. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  573. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  574. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  575. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  576. };
  577. void send_string(const char *str) {
  578. send_string_with_delay(str, 0);
  579. }
  580. void send_string_P(const char *str) {
  581. send_string_with_delay_P(str, 0);
  582. }
  583. void send_string_with_delay(const char *str, uint8_t interval) {
  584. while (1) {
  585. char ascii_code = *str;
  586. if (!ascii_code) break;
  587. if (ascii_code == 1) {
  588. // tap
  589. uint8_t keycode = *(++str);
  590. register_code(keycode);
  591. unregister_code(keycode);
  592. } else if (ascii_code == 2) {
  593. // down
  594. uint8_t keycode = *(++str);
  595. register_code(keycode);
  596. } else if (ascii_code == 3) {
  597. // up
  598. uint8_t keycode = *(++str);
  599. unregister_code(keycode);
  600. } else {
  601. send_char(ascii_code);
  602. }
  603. ++str;
  604. // interval
  605. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  606. }
  607. }
  608. void send_string_with_delay_P(const char *str, uint8_t interval) {
  609. while (1) {
  610. char ascii_code = pgm_read_byte(str);
  611. if (!ascii_code) break;
  612. if (ascii_code == 1) {
  613. // tap
  614. uint8_t keycode = pgm_read_byte(++str);
  615. register_code(keycode);
  616. unregister_code(keycode);
  617. } else if (ascii_code == 2) {
  618. // down
  619. uint8_t keycode = pgm_read_byte(++str);
  620. register_code(keycode);
  621. } else if (ascii_code == 3) {
  622. // up
  623. uint8_t keycode = pgm_read_byte(++str);
  624. unregister_code(keycode);
  625. } else {
  626. send_char(ascii_code);
  627. }
  628. ++str;
  629. // interval
  630. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  631. }
  632. }
  633. void send_char(char ascii_code) {
  634. uint8_t keycode;
  635. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  636. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  637. register_code(KC_LSFT);
  638. register_code(keycode);
  639. unregister_code(keycode);
  640. unregister_code(KC_LSFT);
  641. } else {
  642. register_code(keycode);
  643. unregister_code(keycode);
  644. }
  645. }
  646. void set_single_persistent_default_layer(uint8_t default_layer) {
  647. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  648. PLAY_SONG(default_layer_songs[default_layer]);
  649. #endif
  650. eeconfig_update_default_layer(1U<<default_layer);
  651. default_layer_set(1U<<default_layer);
  652. }
  653. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  654. if (IS_LAYER_ON(layer1) && IS_LAYER_ON(layer2)) {
  655. layer_on(layer3);
  656. } else {
  657. layer_off(layer3);
  658. }
  659. }
  660. void tap_random_base64(void) {
  661. #if defined(__AVR_ATmega32U4__)
  662. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  663. #else
  664. uint8_t key = rand() % 64;
  665. #endif
  666. switch (key) {
  667. case 0 ... 25:
  668. register_code(KC_LSFT);
  669. register_code(key + KC_A);
  670. unregister_code(key + KC_A);
  671. unregister_code(KC_LSFT);
  672. break;
  673. case 26 ... 51:
  674. register_code(key - 26 + KC_A);
  675. unregister_code(key - 26 + KC_A);
  676. break;
  677. case 52:
  678. register_code(KC_0);
  679. unregister_code(KC_0);
  680. break;
  681. case 53 ... 61:
  682. register_code(key - 53 + KC_1);
  683. unregister_code(key - 53 + KC_1);
  684. break;
  685. case 62:
  686. register_code(KC_LSFT);
  687. register_code(KC_EQL);
  688. unregister_code(KC_EQL);
  689. unregister_code(KC_LSFT);
  690. break;
  691. case 63:
  692. register_code(KC_SLSH);
  693. unregister_code(KC_SLSH);
  694. break;
  695. }
  696. }
  697. void matrix_init_quantum() {
  698. #ifdef BACKLIGHT_ENABLE
  699. backlight_init_ports();
  700. #endif
  701. #ifdef AUDIO_ENABLE
  702. audio_init();
  703. #endif
  704. matrix_init_kb();
  705. }
  706. void matrix_scan_quantum() {
  707. #ifdef AUDIO_ENABLE
  708. matrix_scan_music();
  709. #endif
  710. #ifdef TAP_DANCE_ENABLE
  711. matrix_scan_tap_dance();
  712. #endif
  713. #ifdef COMBO_ENABLE
  714. matrix_scan_combo();
  715. #endif
  716. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  717. backlight_task();
  718. #endif
  719. matrix_scan_kb();
  720. }
  721. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  722. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  723. #if BACKLIGHT_PIN == B7
  724. # define COM1x1 COM1C1
  725. # define OCR1x OCR1C
  726. #elif BACKLIGHT_PIN == B6
  727. # define COM1x1 COM1B1
  728. # define OCR1x OCR1B
  729. #elif BACKLIGHT_PIN == B5
  730. # define COM1x1 COM1A1
  731. # define OCR1x OCR1A
  732. #else
  733. # define NO_BACKLIGHT_CLOCK
  734. #endif
  735. #ifndef BACKLIGHT_ON_STATE
  736. #define BACKLIGHT_ON_STATE 0
  737. #endif
  738. __attribute__ ((weak))
  739. void backlight_init_ports(void)
  740. {
  741. // Setup backlight pin as output and output to on state.
  742. // DDRx |= n
  743. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  744. #if BACKLIGHT_ON_STATE == 0
  745. // PORTx &= ~n
  746. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  747. #else
  748. // PORTx |= n
  749. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  750. #endif
  751. #ifndef NO_BACKLIGHT_CLOCK
  752. // Use full 16-bit resolution.
  753. ICR1 = 0xFFFF;
  754. // I could write a wall of text here to explain... but TL;DW
  755. // Go read the ATmega32u4 datasheet.
  756. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  757. // Pin PB7 = OCR1C (Timer 1, Channel C)
  758. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  759. // (i.e. start high, go low when counter matches.)
  760. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  761. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  762. TCCR1A = _BV(COM1x1) | _BV(WGM11); // = 0b00001010;
  763. TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  764. #endif
  765. backlight_init();
  766. #ifdef BACKLIGHT_BREATHING
  767. breathing_defaults();
  768. #endif
  769. }
  770. __attribute__ ((weak))
  771. void backlight_set(uint8_t level)
  772. {
  773. // Prevent backlight blink on lowest level
  774. // #if BACKLIGHT_ON_STATE == 0
  775. // // PORTx &= ~n
  776. // _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  777. // #else
  778. // // PORTx |= n
  779. // _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  780. // #endif
  781. if ( level == 0 ) {
  782. #ifndef NO_BACKLIGHT_CLOCK
  783. // Turn off PWM control on backlight pin, revert to output low.
  784. TCCR1A &= ~(_BV(COM1x1));
  785. OCR1x = 0x0;
  786. #else
  787. // #if BACKLIGHT_ON_STATE == 0
  788. // // PORTx |= n
  789. // _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  790. // #else
  791. // // PORTx &= ~n
  792. // _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  793. // #endif
  794. #endif
  795. }
  796. #ifndef NO_BACKLIGHT_CLOCK
  797. else if ( level == BACKLIGHT_LEVELS ) {
  798. // Turn on PWM control of backlight pin
  799. TCCR1A |= _BV(COM1x1);
  800. // Set the brightness
  801. OCR1x = 0xFFFF;
  802. }
  803. else {
  804. // Turn on PWM control of backlight pin
  805. TCCR1A |= _BV(COM1x1);
  806. // Set the brightness
  807. OCR1x = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
  808. }
  809. #endif
  810. #ifdef BACKLIGHT_BREATHING
  811. breathing_intensity_default();
  812. #endif
  813. }
  814. uint8_t backlight_tick = 0;
  815. void backlight_task(void) {
  816. #ifdef NO_BACKLIGHT_CLOCK
  817. if ((0xFFFF >> ((BACKLIGHT_LEVELS - backlight_config.level) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  818. #if BACKLIGHT_ON_STATE == 0
  819. // PORTx &= ~n
  820. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  821. #else
  822. // PORTx |= n
  823. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  824. #endif
  825. } else {
  826. #if BACKLIGHT_ON_STATE == 0
  827. // PORTx |= n
  828. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  829. #else
  830. // PORTx &= ~n
  831. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  832. #endif
  833. }
  834. backlight_tick = (backlight_tick + 1) % 16;
  835. #endif
  836. }
  837. #ifdef BACKLIGHT_BREATHING
  838. #define BREATHING_NO_HALT 0
  839. #define BREATHING_HALT_OFF 1
  840. #define BREATHING_HALT_ON 2
  841. static uint8_t breath_intensity;
  842. static uint8_t breath_speed;
  843. static uint16_t breathing_index;
  844. static uint8_t breathing_halt;
  845. void breathing_enable(void)
  846. {
  847. if (get_backlight_level() == 0)
  848. {
  849. breathing_index = 0;
  850. }
  851. else
  852. {
  853. // Set breathing_index to be at the midpoint (brightest point)
  854. breathing_index = 0x20 << breath_speed;
  855. }
  856. breathing_halt = BREATHING_NO_HALT;
  857. // Enable breathing interrupt
  858. TIMSK1 |= _BV(OCIE1A);
  859. }
  860. void breathing_pulse(void)
  861. {
  862. if (get_backlight_level() == 0)
  863. {
  864. breathing_index = 0;
  865. }
  866. else
  867. {
  868. // Set breathing_index to be at the midpoint + 1 (brightest point)
  869. breathing_index = 0x21 << breath_speed;
  870. }
  871. breathing_halt = BREATHING_HALT_ON;
  872. // Enable breathing interrupt
  873. TIMSK1 |= _BV(OCIE1A);
  874. }
  875. void breathing_disable(void)
  876. {
  877. // Disable breathing interrupt
  878. TIMSK1 &= ~_BV(OCIE1A);
  879. backlight_set(get_backlight_level());
  880. }
  881. void breathing_self_disable(void)
  882. {
  883. if (get_backlight_level() == 0)
  884. {
  885. breathing_halt = BREATHING_HALT_OFF;
  886. }
  887. else
  888. {
  889. breathing_halt = BREATHING_HALT_ON;
  890. }
  891. //backlight_set(get_backlight_level());
  892. }
  893. void breathing_toggle(void)
  894. {
  895. if (!is_breathing())
  896. {
  897. if (get_backlight_level() == 0)
  898. {
  899. breathing_index = 0;
  900. }
  901. else
  902. {
  903. // Set breathing_index to be at the midpoint + 1 (brightest point)
  904. breathing_index = 0x21 << breath_speed;
  905. }
  906. breathing_halt = BREATHING_NO_HALT;
  907. }
  908. // Toggle breathing interrupt
  909. TIMSK1 ^= _BV(OCIE1A);
  910. // Restore backlight level
  911. if (!is_breathing())
  912. {
  913. backlight_set(get_backlight_level());
  914. }
  915. }
  916. bool is_breathing(void)
  917. {
  918. return (TIMSK1 && _BV(OCIE1A));
  919. }
  920. void breathing_intensity_default(void)
  921. {
  922. //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
  923. breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
  924. }
  925. void breathing_intensity_set(uint8_t value)
  926. {
  927. breath_intensity = value;
  928. }
  929. void breathing_speed_default(void)
  930. {
  931. breath_speed = 4;
  932. }
  933. void breathing_speed_set(uint8_t value)
  934. {
  935. bool is_breathing_now = is_breathing();
  936. uint8_t old_breath_speed = breath_speed;
  937. if (is_breathing_now)
  938. {
  939. // Disable breathing interrupt
  940. TIMSK1 &= ~_BV(OCIE1A);
  941. }
  942. breath_speed = value;
  943. if (is_breathing_now)
  944. {
  945. // Adjust index to account for new speed
  946. breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
  947. // Enable breathing interrupt
  948. TIMSK1 |= _BV(OCIE1A);
  949. }
  950. }
  951. void breathing_speed_inc(uint8_t value)
  952. {
  953. if ((uint16_t)(breath_speed - value) > 10 )
  954. {
  955. breathing_speed_set(0);
  956. }
  957. else
  958. {
  959. breathing_speed_set(breath_speed - value);
  960. }
  961. }
  962. void breathing_speed_dec(uint8_t value)
  963. {
  964. if ((uint16_t)(breath_speed + value) > 10 )
  965. {
  966. breathing_speed_set(10);
  967. }
  968. else
  969. {
  970. breathing_speed_set(breath_speed + value);
  971. }
  972. }
  973. void breathing_defaults(void)
  974. {
  975. breathing_intensity_default();
  976. breathing_speed_default();
  977. breathing_halt = BREATHING_NO_HALT;
  978. }
  979. /* Breathing Sleep LED brighness(PWM On period) table
  980. * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
  981. *
  982. * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
  983. * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
  984. */
  985. static const uint8_t breathing_table[64] PROGMEM = {
  986. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
  987. 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
  988. 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
  989. 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  990. };
  991. ISR(TIMER1_COMPA_vect)
  992. {
  993. // OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
  994. uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
  995. if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
  996. {
  997. // Disable breathing interrupt
  998. TIMSK1 &= ~_BV(OCIE1A);
  999. }
  1000. OCR1x = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
  1001. }
  1002. #endif // breathing
  1003. #else // backlight
  1004. __attribute__ ((weak))
  1005. void backlight_init_ports(void)
  1006. {
  1007. }
  1008. __attribute__ ((weak))
  1009. void backlight_set(uint8_t level)
  1010. {
  1011. }
  1012. #endif // backlight
  1013. // Functions for spitting out values
  1014. //
  1015. void send_dword(uint32_t number) { // this might not actually work
  1016. uint16_t word = (number >> 16);
  1017. send_word(word);
  1018. send_word(number & 0xFFFFUL);
  1019. }
  1020. void send_word(uint16_t number) {
  1021. uint8_t byte = number >> 8;
  1022. send_byte(byte);
  1023. send_byte(number & 0xFF);
  1024. }
  1025. void send_byte(uint8_t number) {
  1026. uint8_t nibble = number >> 4;
  1027. send_nibble(nibble);
  1028. send_nibble(number & 0xF);
  1029. }
  1030. void send_nibble(uint8_t number) {
  1031. switch (number) {
  1032. case 0:
  1033. register_code(KC_0);
  1034. unregister_code(KC_0);
  1035. break;
  1036. case 1 ... 9:
  1037. register_code(KC_1 + (number - 1));
  1038. unregister_code(KC_1 + (number - 1));
  1039. break;
  1040. case 0xA ... 0xF:
  1041. register_code(KC_A + (number - 0xA));
  1042. unregister_code(KC_A + (number - 0xA));
  1043. break;
  1044. }
  1045. }
  1046. __attribute__((weak))
  1047. uint16_t hex_to_keycode(uint8_t hex)
  1048. {
  1049. hex = hex & 0xF;
  1050. if (hex == 0x0) {
  1051. return KC_0;
  1052. } else if (hex < 0xA) {
  1053. return KC_1 + (hex - 0x1);
  1054. } else {
  1055. return KC_A + (hex - 0xA);
  1056. }
  1057. }
  1058. void api_send_unicode(uint32_t unicode) {
  1059. #ifdef API_ENABLE
  1060. uint8_t chunk[4];
  1061. dword_to_bytes(unicode, chunk);
  1062. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1063. #endif
  1064. }
  1065. __attribute__ ((weak))
  1066. void led_set_user(uint8_t usb_led) {
  1067. }
  1068. __attribute__ ((weak))
  1069. void led_set_kb(uint8_t usb_led) {
  1070. led_set_user(usb_led);
  1071. }
  1072. __attribute__ ((weak))
  1073. void led_init_ports(void)
  1074. {
  1075. }
  1076. __attribute__ ((weak))
  1077. void led_set(uint8_t usb_led)
  1078. {
  1079. // Example LED Code
  1080. //
  1081. // // Using PE6 Caps Lock LED
  1082. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1083. // {
  1084. // // Output high.
  1085. // DDRE |= (1<<6);
  1086. // PORTE |= (1<<6);
  1087. // }
  1088. // else
  1089. // {
  1090. // // Output low.
  1091. // DDRE &= ~(1<<6);
  1092. // PORTE &= ~(1<<6);
  1093. // }
  1094. led_set_kb(usb_led);
  1095. }
  1096. //------------------------------------------------------------------------------
  1097. // Override these functions in your keymap file to play different tunes on
  1098. // different events such as startup and bootloader jump
  1099. __attribute__ ((weak))
  1100. void startup_user() {}
  1101. __attribute__ ((weak))
  1102. void shutdown_user() {}
  1103. //------------------------------------------------------------------------------