oled_driver.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include "i2c_master.h"
  15. #include "oled_driver.h"
  16. #include OLED_FONT_H
  17. #include "timer.h"
  18. #include "print.h"
  19. #include <string.h>
  20. #if defined(__AVR__)
  21. # include <avr/io.h>
  22. # include <avr/pgmspace.h>
  23. #elif defined(ESP8266)
  24. # include <pgmspace.h>
  25. #else // defined(ESP8266)
  26. # define PROGMEM
  27. # define memcpy_P(des, src, len) memcpy(des, src, len)
  28. #endif // defined(__AVR__)
  29. // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
  30. // for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
  31. // Fundamental Commands
  32. #define CONTRAST 0x81
  33. #define DISPLAY_ALL_ON 0xA5
  34. #define DISPLAY_ALL_ON_RESUME 0xA4
  35. #define NORMAL_DISPLAY 0xA6
  36. #define DISPLAY_ON 0xAF
  37. #define DISPLAY_OFF 0xAE
  38. #define NOP 0xE3
  39. // Scrolling Commands
  40. #define ACTIVATE_SCROLL 0x2F
  41. #define DEACTIVATE_SCROLL 0x2E
  42. #define SCROLL_RIGHT 0x26
  43. #define SCROLL_LEFT 0x27
  44. #define SCROLL_RIGHT_UP 0x29
  45. #define SCROLL_LEFT_UP 0x2A
  46. // Addressing Setting Commands
  47. #define MEMORY_MODE 0x20
  48. #define COLUMN_ADDR 0x21
  49. #define PAGE_ADDR 0x22
  50. #define PAM_SETCOLUMN_LSB 0x00
  51. #define PAM_SETCOLUMN_MSB 0x10
  52. #define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
  53. // Hardware Configuration Commands
  54. #define DISPLAY_START_LINE 0x40
  55. #define SEGMENT_REMAP 0xA0
  56. #define SEGMENT_REMAP_INV 0xA1
  57. #define MULTIPLEX_RATIO 0xA8
  58. #define COM_SCAN_INC 0xC0
  59. #define COM_SCAN_DEC 0xC8
  60. #define DISPLAY_OFFSET 0xD3
  61. #define COM_PINS 0xDA
  62. #define COM_PINS_SEQ 0x02
  63. #define COM_PINS_ALT 0x12
  64. #define COM_PINS_SEQ_LR 0x22
  65. #define COM_PINS_ALT_LR 0x32
  66. // Timing & Driving Commands
  67. #define DISPLAY_CLOCK 0xD5
  68. #define PRE_CHARGE_PERIOD 0xD9
  69. #define VCOM_DETECT 0xDB
  70. // Charge Pump Commands
  71. #define CHARGE_PUMP 0x8D
  72. // Misc defines
  73. #define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
  74. #define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
  75. // i2c defines
  76. #define I2C_CMD 0x00
  77. #define I2C_DATA 0x40
  78. #if defined(__AVR__)
  79. // already defined on ARM
  80. # define I2C_TIMEOUT 100
  81. # define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  82. #else // defined(__AVR__)
  83. # define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  84. #endif // defined(__AVR__)
  85. #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
  86. #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
  87. #define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
  88. // Display buffer's is the same as the OLED memory layout
  89. // this is so we don't end up with rounding errors with
  90. // parts of the display unusable or don't get cleared correctly
  91. // and also allows for drawing & inverting
  92. uint8_t oled_buffer[OLED_MATRIX_SIZE];
  93. uint8_t * oled_cursor;
  94. OLED_BLOCK_TYPE oled_dirty = 0;
  95. bool oled_initialized = false;
  96. bool oled_active = false;
  97. bool oled_scrolling = false;
  98. uint8_t oled_rotation = 0;
  99. uint8_t oled_rotation_width = 0;
  100. #if OLED_TIMEOUT > 0
  101. uint32_t oled_timeout;
  102. #endif
  103. #if OLED_SCROLL_TIMEOUT > 0
  104. uint32_t oled_scroll_timeout;
  105. #endif
  106. // Internal variables to reduce math instructions
  107. #if defined(__AVR__)
  108. // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
  109. // probably should move this into i2c_master...
  110. static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
  111. i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
  112. for (uint16_t i = 0; i < length && status >= 0; i++) {
  113. status = i2c_write(pgm_read_byte((const char *)data++), timeout);
  114. if (status) break;
  115. }
  116. i2c_stop();
  117. return status;
  118. }
  119. #endif
  120. // Flips the rendering bits for a character at the current cursor position
  121. static void InvertCharacter(uint8_t *cursor) {
  122. const uint8_t *end = cursor + OLED_FONT_WIDTH;
  123. while (cursor < end) {
  124. *cursor = ~(*cursor);
  125. cursor++;
  126. }
  127. }
  128. bool oled_init(uint8_t rotation) {
  129. oled_rotation = oled_init_user(rotation);
  130. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  131. oled_rotation_width = OLED_DISPLAY_WIDTH;
  132. } else {
  133. oled_rotation_width = OLED_DISPLAY_HEIGHT;
  134. }
  135. i2c_init();
  136. static const uint8_t PROGMEM display_setup1[] = {
  137. I2C_CMD,
  138. DISPLAY_OFF,
  139. DISPLAY_CLOCK,
  140. 0x80,
  141. MULTIPLEX_RATIO,
  142. OLED_DISPLAY_HEIGHT - 1,
  143. DISPLAY_OFFSET,
  144. 0x00,
  145. DISPLAY_START_LINE | 0x00,
  146. CHARGE_PUMP,
  147. 0x14,
  148. #if (OLED_IC != OLED_IC_SH1106)
  149. // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
  150. MEMORY_MODE,
  151. 0x00, // Horizontal addressing mode
  152. #endif
  153. };
  154. if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
  155. print("oled_init cmd set 1 failed\n");
  156. return false;
  157. }
  158. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
  159. static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC};
  160. if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
  161. print("oled_init cmd normal rotation failed\n");
  162. return false;
  163. }
  164. } else {
  165. static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC};
  166. if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
  167. print("display_flipped failed\n");
  168. return false;
  169. }
  170. }
  171. static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, 0x8F, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x40, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON};
  172. if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
  173. print("display_setup2 failed\n");
  174. return false;
  175. }
  176. #if OLED_TIMEOUT > 0
  177. oled_timeout = timer_read32() + OLED_TIMEOUT;
  178. #endif
  179. #if OLED_SCROLL_TIMEOUT > 0
  180. oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
  181. #endif
  182. oled_clear();
  183. oled_initialized = true;
  184. oled_active = true;
  185. oled_scrolling = false;
  186. return true;
  187. }
  188. __attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
  189. void oled_clear(void) {
  190. memset(oled_buffer, 0, sizeof(oled_buffer));
  191. oled_cursor = &oled_buffer[0];
  192. oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
  193. }
  194. static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
  195. // Calculate commands to set memory addressing bounds.
  196. uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
  197. uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
  198. #if (OLED_IC == OLED_IC_SH1106)
  199. // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
  200. // Column value must be split into high and low nybble and sent as two commands.
  201. cmd_array[0] = PAM_PAGE_ADDR | start_page;
  202. cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
  203. cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
  204. cmd_array[3] = NOP;
  205. cmd_array[4] = NOP;
  206. cmd_array[5] = NOP;
  207. #else
  208. // Commands for use in Horizontal Addressing mode.
  209. cmd_array[1] = start_column;
  210. cmd_array[4] = start_page;
  211. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
  212. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
  213. #endif
  214. }
  215. static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
  216. cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
  217. cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
  218. cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
  219. ;
  220. cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
  221. }
  222. uint8_t crot(uint8_t a, int8_t n) {
  223. const uint8_t mask = 0x7;
  224. n &= mask;
  225. return a << n | a >> (-n & mask);
  226. }
  227. static void rotate_90(const uint8_t *src, uint8_t *dest) {
  228. for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
  229. uint8_t selector = (1 << i);
  230. for (uint8_t j = 0; j < 8; ++j) {
  231. dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
  232. }
  233. }
  234. }
  235. void oled_render(void) {
  236. // Do we have work to do?
  237. if (!oled_dirty || oled_scrolling) {
  238. return;
  239. }
  240. // Find first dirty block
  241. uint8_t update_start = 0;
  242. while (!(oled_dirty & (1 << update_start))) {
  243. ++update_start;
  244. }
  245. // Set column & page position
  246. static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
  247. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  248. calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  249. } else {
  250. calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
  251. }
  252. // Send column & page position
  253. if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
  254. print("oled_render offset command failed\n");
  255. return;
  256. }
  257. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  258. // Send render data chunk as is
  259. if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  260. print("oled_render data failed\n");
  261. return;
  262. }
  263. } else {
  264. // Rotate the render chunks
  265. const static uint8_t source_map[] = OLED_SOURCE_MAP;
  266. const static uint8_t target_map[] = OLED_TARGET_MAP;
  267. static uint8_t temp_buffer[OLED_BLOCK_SIZE];
  268. memset(temp_buffer, 0, sizeof(temp_buffer));
  269. for (uint8_t i = 0; i < sizeof(source_map); ++i) {
  270. rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
  271. }
  272. // Send render data chunk after rotating
  273. if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
  274. print("oled_render90 data failed\n");
  275. return;
  276. }
  277. }
  278. // Turn on display if it is off
  279. oled_on();
  280. // Clear dirty flag
  281. oled_dirty &= ~(1 << update_start);
  282. }
  283. void oled_set_cursor(uint8_t col, uint8_t line) {
  284. uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
  285. // Out of bounds?
  286. if (index >= OLED_MATRIX_SIZE) {
  287. index = 0;
  288. }
  289. oled_cursor = &oled_buffer[index];
  290. }
  291. void oled_advance_page(bool clearPageRemainder) {
  292. uint16_t index = oled_cursor - &oled_buffer[0];
  293. uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
  294. if (clearPageRemainder) {
  295. // Remaining Char count
  296. remaining = remaining / OLED_FONT_WIDTH;
  297. // Write empty character until next line
  298. while (remaining--) oled_write_char(' ', false);
  299. } else {
  300. // Next page index out of bounds?
  301. if (index + remaining >= OLED_MATRIX_SIZE) {
  302. index = 0;
  303. remaining = 0;
  304. }
  305. oled_cursor = &oled_buffer[index + remaining];
  306. }
  307. }
  308. void oled_advance_char(void) {
  309. uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
  310. uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
  311. // Do we have enough space on the current line for the next character
  312. if (remainingSpace < OLED_FONT_WIDTH) {
  313. nextIndex += remainingSpace;
  314. }
  315. // Did we go out of bounds
  316. if (nextIndex >= OLED_MATRIX_SIZE) {
  317. nextIndex = 0;
  318. }
  319. // Update cursor position
  320. oled_cursor = &oled_buffer[nextIndex];
  321. }
  322. // Main handler that writes character data to the display buffer
  323. void oled_write_char(const char data, bool invert) {
  324. // Advance to the next line if newline
  325. if (data == '\n') {
  326. // Old source wrote ' ' until end of line...
  327. oled_advance_page(true);
  328. return;
  329. }
  330. if (data == '\r') {
  331. oled_advance_page(false);
  332. return;
  333. }
  334. // copy the current render buffer to check for dirty after
  335. static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
  336. memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
  337. // set the reder buffer data
  338. uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
  339. if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
  340. memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
  341. } else {
  342. const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
  343. memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
  344. }
  345. // Invert if needed
  346. if (invert) {
  347. InvertCharacter(oled_cursor);
  348. }
  349. // Dirty check
  350. if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
  351. uint16_t index = oled_cursor - &oled_buffer[0];
  352. oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
  353. // Edgecase check if the written data spans the 2 chunks
  354. oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
  355. }
  356. // Finally move to the next char
  357. oled_advance_char();
  358. }
  359. void oled_write(const char *data, bool invert) {
  360. const char *end = data + strlen(data);
  361. while (data < end) {
  362. oled_write_char(*data, invert);
  363. data++;
  364. }
  365. }
  366. void oled_write_ln(const char *data, bool invert) {
  367. oled_write(data, invert);
  368. oled_advance_page(true);
  369. }
  370. void oled_write_raw(const char *data, uint16_t size) {
  371. if (size > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE;
  372. for (uint16_t i = 0; i < size; i++) {
  373. if (oled_buffer[i] == data[i]) continue;
  374. oled_buffer[i] = data[i];
  375. oled_dirty |= (1 << (i / OLED_BLOCK_SIZE));
  376. }
  377. }
  378. #if defined(__AVR__)
  379. void oled_write_P(const char *data, bool invert) {
  380. uint8_t c = pgm_read_byte(data);
  381. while (c != 0) {
  382. oled_write_char(c, invert);
  383. c = pgm_read_byte(++data);
  384. }
  385. }
  386. void oled_write_ln_P(const char *data, bool invert) {
  387. oled_write_P(data, invert);
  388. oled_advance_page(true);
  389. }
  390. void oled_write_raw_P(const char *data, uint16_t size) {
  391. if (size > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE;
  392. for (uint16_t i = 0; i < size; i++) {
  393. uint8_t c = pgm_read_byte(++data);
  394. if (oled_buffer[i] == c) continue;
  395. oled_buffer[i] = c;
  396. oled_dirty |= (1 << (i / OLED_BLOCK_SIZE));
  397. }
  398. }
  399. #endif // defined(__AVR__)
  400. bool oled_on(void) {
  401. #if OLED_TIMEOUT > 0
  402. oled_timeout = timer_read32() + OLED_TIMEOUT;
  403. #endif
  404. static const uint8_t PROGMEM display_on[] = {I2C_CMD, DISPLAY_ON};
  405. if (!oled_active) {
  406. if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
  407. print("oled_on cmd failed\n");
  408. return oled_active;
  409. }
  410. oled_active = true;
  411. }
  412. return oled_active;
  413. }
  414. bool oled_off(void) {
  415. static const uint8_t PROGMEM display_off[] = {I2C_CMD, DISPLAY_OFF};
  416. if (oled_active) {
  417. if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
  418. print("oled_off cmd failed\n");
  419. return oled_active;
  420. }
  421. oled_active = false;
  422. }
  423. return !oled_active;
  424. }
  425. bool oled_scroll_right(void) {
  426. // Dont enable scrolling if we need to update the display
  427. // This prevents scrolling of bad data from starting the scroll too early after init
  428. if (!oled_dirty && !oled_scrolling) {
  429. static const uint8_t PROGMEM display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL};
  430. if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
  431. print("oled_scroll_right cmd failed\n");
  432. return oled_scrolling;
  433. }
  434. oled_scrolling = true;
  435. }
  436. return oled_scrolling;
  437. }
  438. bool oled_scroll_left(void) {
  439. // Dont enable scrolling if we need to update the display
  440. // This prevents scrolling of bad data from starting the scroll too early after init
  441. if (!oled_dirty && !oled_scrolling) {
  442. static const uint8_t PROGMEM display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL};
  443. if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
  444. print("oled_scroll_left cmd failed\n");
  445. return oled_scrolling;
  446. }
  447. oled_scrolling = true;
  448. }
  449. return oled_scrolling;
  450. }
  451. bool oled_scroll_off(void) {
  452. if (oled_scrolling) {
  453. static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
  454. if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
  455. print("oled_scroll_off cmd failed\n");
  456. return oled_scrolling;
  457. }
  458. oled_scrolling = false;
  459. oled_dirty = -1;
  460. }
  461. return !oled_scrolling;
  462. }
  463. uint8_t oled_max_chars(void) {
  464. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  465. return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
  466. }
  467. return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
  468. }
  469. uint8_t oled_max_lines(void) {
  470. if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
  471. return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
  472. }
  473. return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
  474. }
  475. void oled_task(void) {
  476. if (!oled_initialized) {
  477. return;
  478. }
  479. oled_set_cursor(0, 0);
  480. oled_task_user();
  481. #if OLED_SCROLL_TIMEOUT > 0
  482. if (oled_dirty && oled_scrolling) {
  483. oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
  484. oled_scroll_off();
  485. }
  486. #endif
  487. // Smart render system, no need to check for dirty
  488. oled_render();
  489. // Display timeout check
  490. #if OLED_TIMEOUT > 0
  491. if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
  492. oled_off();
  493. }
  494. #endif
  495. #if OLED_SCROLL_TIMEOUT > 0
  496. if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
  497. # ifdef OLED_SCROLL_TIMEOUT_RIGHT
  498. oled_scroll_right();
  499. # else
  500. oled_scroll_left();
  501. # endif
  502. }
  503. #endif
  504. }
  505. __attribute__((weak)) void oled_task_user(void) {}