matrix.c 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. /*
  2. Copyright 2012 Jun Wako
  3. Copyright 2014 Jack Humbert
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. #include <stdint.h>
  16. #include <stdbool.h>
  17. #if defined(__AVR__)
  18. #include <avr/io.h>
  19. #endif
  20. #include "wait.h"
  21. #include "print.h"
  22. #include "debug.h"
  23. #include "util.h"
  24. #include "matrix.h"
  25. #include "timer.h"
  26. #if (MATRIX_COLS <= 8)
  27. # define print_matrix_header() print("\nr/c 01234567\n")
  28. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  29. # define matrix_bitpop(i) bitpop(matrix[i])
  30. # define ROW_SHIFTER ((uint8_t)1)
  31. #elif (MATRIX_COLS <= 16)
  32. # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
  33. # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
  34. # define matrix_bitpop(i) bitpop16(matrix[i])
  35. # define ROW_SHIFTER ((uint16_t)1)
  36. #elif (MATRIX_COLS <= 32)
  37. # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
  38. # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
  39. # define matrix_bitpop(i) bitpop32(matrix[i])
  40. # define ROW_SHIFTER ((uint32_t)1)
  41. #endif
  42. #define MAIN_ROWMASK 0xFFF0;
  43. #define LOWER_ROWMASK 0x1F80;
  44. /* matrix state(1:on, 0:off) */
  45. static matrix_row_t matrix[MATRIX_ROWS];
  46. __attribute__ ((weak))
  47. void matrix_init_quantum(void) {
  48. matrix_init_kb();
  49. }
  50. __attribute__ ((weak))
  51. void matrix_scan_quantum(void) {
  52. matrix_scan_kb();
  53. }
  54. __attribute__ ((weak))
  55. void matrix_init_kb(void) {
  56. matrix_init_user();
  57. }
  58. __attribute__ ((weak))
  59. void matrix_scan_kb(void) {
  60. matrix_scan_user();
  61. }
  62. __attribute__ ((weak))
  63. void matrix_init_user(void) {
  64. }
  65. __attribute__ ((weak))
  66. void matrix_scan_user(void) {
  67. }
  68. inline
  69. uint8_t matrix_rows(void) {
  70. return MATRIX_ROWS;
  71. }
  72. inline
  73. uint8_t matrix_cols(void) {
  74. return MATRIX_COLS;
  75. }
  76. void matrix_init(void) {
  77. matrix_init_quantum();
  78. }
  79. uint8_t matrix_scan(void)
  80. {
  81. SERIAL_UART_INIT();
  82. uint32_t timeout = 0;
  83. //the s character requests the RF slave to send the matrix
  84. SERIAL_UART_DATA = 's';
  85. //trust the external keystates entirely, erase the last data
  86. uint8_t uart_data[7] = {0};
  87. //there are 10 bytes corresponding to 10 columns, and an end byte
  88. for (uint8_t i = 0; i < 7; i++) {
  89. //wait for the serial data, timeout if it's been too long
  90. //this only happened in testing with a loose wire, but does no
  91. //harm to leave it in here
  92. while(!SERIAL_UART_RXD_PRESENT){
  93. timeout++;
  94. if (timeout > 10000){
  95. break;
  96. }
  97. }
  98. uart_data[i] = SERIAL_UART_DATA;
  99. }
  100. //check for the end packet, the key state bytes use the LSBs, so 0xE0
  101. //will only show up here if the correct bytes were recieved
  102. if (uart_data[6] == 0x96) { //this is an arbitrary binary checksum (10010110)
  103. //shifting and transferring the keystates to the QMK matrix variable
  104. //bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
  105. //bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
  106. //bits 43-48 are row 5 (same as row 4)
  107. /* ASSUMING MSB FIRST */
  108. matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
  109. matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
  110. matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
  111. matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
  112. matrix[4] = ((uint16_t) uart_data[5] << 7) & LOWER_ROWMASK;
  113. /* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
  114. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  115. //I've unpacked these into the mirror image of what QMK expects them to be, so...
  116. matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
  117. //bithack mirror! Doesn't make any sense, but works - and efficiently.
  118. }
  119. }
  120. matrix_scan_quantum();
  121. return 1;
  122. }
  123. inline
  124. bool matrix_is_on(uint8_t row, uint8_t col)
  125. {
  126. return (matrix[row] & ((matrix_row_t)1<col));
  127. }
  128. inline
  129. matrix_row_t matrix_get_row(uint8_t row)
  130. {
  131. return matrix[row];
  132. }
  133. void matrix_print(void)
  134. {
  135. print_matrix_header();
  136. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  137. phex(row); print(": ");
  138. print_matrix_row(row);
  139. print("\n");
  140. }
  141. }
  142. uint8_t matrix_key_count(void)
  143. {
  144. uint8_t count = 0;
  145. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  146. count += matrix_bitpop(i);
  147. }
  148. return count;
  149. }