quantum.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
  18. #include "rgb.h"
  19. #endif
  20. #ifdef PROTOCOL_LUFA
  21. #include "outputselect.h"
  22. #endif
  23. #ifndef TAPPING_TERM
  24. #define TAPPING_TERM 200
  25. #endif
  26. #ifndef BREATHING_PERIOD
  27. #define BREATHING_PERIOD 6
  28. #endif
  29. #include "backlight.h"
  30. extern backlight_config_t backlight_config;
  31. #ifdef FAUXCLICKY_ENABLE
  32. #include "fauxclicky.h"
  33. #endif
  34. #ifdef API_ENABLE
  35. #include "api.h"
  36. #endif
  37. #ifdef MIDI_ENABLE
  38. #include "process_midi.h"
  39. #endif
  40. #ifdef VELOCIKEY_ENABLE
  41. #include "velocikey.h"
  42. #endif
  43. #ifdef HAPTIC_ENABLE
  44. #include "haptic.h"
  45. #endif
  46. #ifdef ENCODER_ENABLE
  47. #include "encoder.h"
  48. #endif
  49. #ifdef AUDIO_ENABLE
  50. #ifndef GOODBYE_SONG
  51. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  52. #endif
  53. #ifndef AG_NORM_SONG
  54. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  55. #endif
  56. #ifndef AG_SWAP_SONG
  57. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  58. #endif
  59. float goodbye_song[][2] = GOODBYE_SONG;
  60. float ag_norm_song[][2] = AG_NORM_SONG;
  61. float ag_swap_song[][2] = AG_SWAP_SONG;
  62. #ifdef DEFAULT_LAYER_SONGS
  63. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  64. #endif
  65. #endif
  66. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  67. switch (code) {
  68. case QK_MODS ... QK_MODS_MAX:
  69. break;
  70. default:
  71. return;
  72. }
  73. if (code & QK_LCTL)
  74. f(KC_LCTL);
  75. if (code & QK_LSFT)
  76. f(KC_LSFT);
  77. if (code & QK_LALT)
  78. f(KC_LALT);
  79. if (code & QK_LGUI)
  80. f(KC_LGUI);
  81. if (code < QK_RMODS_MIN) return;
  82. if (code & QK_RCTL)
  83. f(KC_RCTL);
  84. if (code & QK_RSFT)
  85. f(KC_RSFT);
  86. if (code & QK_RALT)
  87. f(KC_RALT);
  88. if (code & QK_RGUI)
  89. f(KC_RGUI);
  90. }
  91. static inline void qk_register_weak_mods(uint8_t kc) {
  92. add_weak_mods(MOD_BIT(kc));
  93. send_keyboard_report();
  94. }
  95. static inline void qk_unregister_weak_mods(uint8_t kc) {
  96. del_weak_mods(MOD_BIT(kc));
  97. send_keyboard_report();
  98. }
  99. static inline void qk_register_mods(uint8_t kc) {
  100. add_weak_mods(MOD_BIT(kc));
  101. send_keyboard_report();
  102. }
  103. static inline void qk_unregister_mods(uint8_t kc) {
  104. del_weak_mods(MOD_BIT(kc));
  105. send_keyboard_report();
  106. }
  107. void register_code16 (uint16_t code) {
  108. if (IS_MOD(code) || code == KC_NO) {
  109. do_code16 (code, qk_register_mods);
  110. } else {
  111. do_code16 (code, qk_register_weak_mods);
  112. }
  113. register_code (code);
  114. }
  115. void unregister_code16 (uint16_t code) {
  116. unregister_code (code);
  117. if (IS_MOD(code) || code == KC_NO) {
  118. do_code16 (code, qk_unregister_mods);
  119. } else {
  120. do_code16 (code, qk_unregister_weak_mods);
  121. }
  122. }
  123. void tap_code16(uint16_t code) {
  124. register_code16(code);
  125. #if TAP_CODE_DELAY > 0
  126. wait_ms(TAP_CODE_DELAY);
  127. #endif
  128. unregister_code16(code);
  129. }
  130. __attribute__ ((weak))
  131. bool process_action_kb(keyrecord_t *record) {
  132. return true;
  133. }
  134. __attribute__ ((weak))
  135. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  136. return process_record_user(keycode, record);
  137. }
  138. __attribute__ ((weak))
  139. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  140. return true;
  141. }
  142. void reset_keyboard(void) {
  143. clear_keyboard();
  144. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  145. process_midi_all_notes_off();
  146. #endif
  147. #ifdef AUDIO_ENABLE
  148. #ifndef NO_MUSIC_MODE
  149. music_all_notes_off();
  150. #endif
  151. uint16_t timer_start = timer_read();
  152. PLAY_SONG(goodbye_song);
  153. shutdown_user();
  154. while(timer_elapsed(timer_start) < 250)
  155. wait_ms(1);
  156. stop_all_notes();
  157. #else
  158. shutdown_user();
  159. wait_ms(250);
  160. #endif
  161. #ifdef HAPTIC_ENABLE
  162. haptic_shutdown();
  163. #endif
  164. // this is also done later in bootloader.c - not sure if it's neccesary here
  165. #ifdef BOOTLOADER_CATERINA
  166. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  167. #endif
  168. bootloader_jump();
  169. }
  170. // Shift / paren setup
  171. #ifndef LSPO_KEY
  172. #define LSPO_KEY KC_9
  173. #endif
  174. #ifndef RSPC_KEY
  175. #define RSPC_KEY KC_0
  176. #endif
  177. #ifndef LSPO_MOD
  178. #define LSPO_MOD KC_LSFT
  179. #endif
  180. #ifndef RSPC_MOD
  181. #define RSPC_MOD KC_RSFT
  182. #endif
  183. // Shift / Enter setup
  184. #ifndef SFTENT_KEY
  185. #define SFTENT_KEY KC_ENT
  186. #endif
  187. static bool shift_interrupted[2] = {0, 0};
  188. static uint16_t scs_timer[2] = {0, 0};
  189. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  190. * Used to ensure that the correct keycode is released if the key is released.
  191. */
  192. static bool grave_esc_was_shifted = false;
  193. bool process_record_quantum(keyrecord_t *record) {
  194. /* This gets the keycode from the key pressed */
  195. keypos_t key = record->event.key;
  196. uint16_t keycode;
  197. #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
  198. /* TODO: Use store_or_get_action() or a similar function. */
  199. if (!disable_action_cache) {
  200. uint8_t layer;
  201. if (record->event.pressed) {
  202. layer = layer_switch_get_layer(key);
  203. update_source_layers_cache(key, layer);
  204. } else {
  205. layer = read_source_layers_cache(key);
  206. }
  207. keycode = keymap_key_to_keycode(layer, key);
  208. } else
  209. #endif
  210. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  211. // This is how you use actions here
  212. // if (keycode == KC_LEAD) {
  213. // action_t action;
  214. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  215. // process_action(record, action);
  216. // return false;
  217. // }
  218. #ifdef VELOCIKEY_ENABLE
  219. if (velocikey_enabled() && record->event.pressed) { velocikey_accelerate(); }
  220. #endif
  221. #ifdef TAP_DANCE_ENABLE
  222. preprocess_tap_dance(keycode, record);
  223. #endif
  224. if (!(
  225. #if defined(KEY_LOCK_ENABLE)
  226. // Must run first to be able to mask key_up events.
  227. process_key_lock(&keycode, record) &&
  228. #endif
  229. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  230. process_clicky(keycode, record) &&
  231. #endif //AUDIO_CLICKY
  232. #ifdef HAPTIC_ENABLE
  233. process_haptic(keycode, record) &&
  234. #endif //HAPTIC_ENABLE
  235. process_record_kb(keycode, record) &&
  236. #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
  237. process_rgb_matrix(keycode, record) &&
  238. #endif
  239. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  240. process_midi(keycode, record) &&
  241. #endif
  242. #ifdef AUDIO_ENABLE
  243. process_audio(keycode, record) &&
  244. #endif
  245. #ifdef STENO_ENABLE
  246. process_steno(keycode, record) &&
  247. #endif
  248. #if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  249. process_music(keycode, record) &&
  250. #endif
  251. #ifdef TAP_DANCE_ENABLE
  252. process_tap_dance(keycode, record) &&
  253. #endif
  254. #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
  255. process_unicode_common(keycode, record) &&
  256. #endif
  257. #ifdef LEADER_ENABLE
  258. process_leader(keycode, record) &&
  259. #endif
  260. #ifdef COMBO_ENABLE
  261. process_combo(keycode, record) &&
  262. #endif
  263. #ifdef PRINTING_ENABLE
  264. process_printer(keycode, record) &&
  265. #endif
  266. #ifdef AUTO_SHIFT_ENABLE
  267. process_auto_shift(keycode, record) &&
  268. #endif
  269. #ifdef TERMINAL_ENABLE
  270. process_terminal(keycode, record) &&
  271. #endif
  272. true)) {
  273. return false;
  274. }
  275. // Shift / paren setup
  276. switch(keycode) {
  277. case RESET:
  278. if (record->event.pressed) {
  279. reset_keyboard();
  280. }
  281. return false;
  282. case DEBUG:
  283. if (record->event.pressed) {
  284. debug_enable = true;
  285. print("DEBUG: enabled.\n");
  286. }
  287. return false;
  288. case EEPROM_RESET:
  289. if (record->event.pressed) {
  290. eeconfig_init();
  291. }
  292. return false;
  293. #ifdef FAUXCLICKY_ENABLE
  294. case FC_TOG:
  295. if (record->event.pressed) {
  296. FAUXCLICKY_TOGGLE;
  297. }
  298. return false;
  299. case FC_ON:
  300. if (record->event.pressed) {
  301. FAUXCLICKY_ON;
  302. }
  303. return false;
  304. case FC_OFF:
  305. if (record->event.pressed) {
  306. FAUXCLICKY_OFF;
  307. }
  308. return false;
  309. #endif
  310. #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  311. case RGB_TOG:
  312. // Split keyboards need to trigger on key-up for edge-case issue
  313. #ifndef SPLIT_KEYBOARD
  314. if (record->event.pressed) {
  315. #else
  316. if (!record->event.pressed) {
  317. #endif
  318. rgblight_toggle();
  319. #ifdef SPLIT_KEYBOARD
  320. RGB_DIRTY = true;
  321. #endif
  322. }
  323. return false;
  324. case RGB_MODE_FORWARD:
  325. if (record->event.pressed) {
  326. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  327. if(shifted) {
  328. rgblight_step_reverse();
  329. }
  330. else {
  331. rgblight_step();
  332. }
  333. #ifdef SPLIT_KEYBOARD
  334. RGB_DIRTY = true;
  335. #endif
  336. }
  337. return false;
  338. case RGB_MODE_REVERSE:
  339. if (record->event.pressed) {
  340. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  341. if(shifted) {
  342. rgblight_step();
  343. }
  344. else {
  345. rgblight_step_reverse();
  346. }
  347. #ifdef SPLIT_KEYBOARD
  348. RGB_DIRTY = true;
  349. #endif
  350. }
  351. return false;
  352. case RGB_HUI:
  353. // Split keyboards need to trigger on key-up for edge-case issue
  354. #ifndef SPLIT_KEYBOARD
  355. if (record->event.pressed) {
  356. #else
  357. if (!record->event.pressed) {
  358. #endif
  359. rgblight_increase_hue();
  360. #ifdef SPLIT_KEYBOARD
  361. RGB_DIRTY = true;
  362. #endif
  363. }
  364. return false;
  365. case RGB_HUD:
  366. // Split keyboards need to trigger on key-up for edge-case issue
  367. #ifndef SPLIT_KEYBOARD
  368. if (record->event.pressed) {
  369. #else
  370. if (!record->event.pressed) {
  371. #endif
  372. rgblight_decrease_hue();
  373. #ifdef SPLIT_KEYBOARD
  374. RGB_DIRTY = true;
  375. #endif
  376. }
  377. return false;
  378. case RGB_SAI:
  379. // Split keyboards need to trigger on key-up for edge-case issue
  380. #ifndef SPLIT_KEYBOARD
  381. if (record->event.pressed) {
  382. #else
  383. if (!record->event.pressed) {
  384. #endif
  385. rgblight_increase_sat();
  386. #ifdef SPLIT_KEYBOARD
  387. RGB_DIRTY = true;
  388. #endif
  389. }
  390. return false;
  391. case RGB_SAD:
  392. // Split keyboards need to trigger on key-up for edge-case issue
  393. #ifndef SPLIT_KEYBOARD
  394. if (record->event.pressed) {
  395. #else
  396. if (!record->event.pressed) {
  397. #endif
  398. rgblight_decrease_sat();
  399. #ifdef SPLIT_KEYBOARD
  400. RGB_DIRTY = true;
  401. #endif
  402. }
  403. return false;
  404. case RGB_VAI:
  405. // Split keyboards need to trigger on key-up for edge-case issue
  406. #ifndef SPLIT_KEYBOARD
  407. if (record->event.pressed) {
  408. #else
  409. if (!record->event.pressed) {
  410. #endif
  411. rgblight_increase_val();
  412. #ifdef SPLIT_KEYBOARD
  413. RGB_DIRTY = true;
  414. #endif
  415. }
  416. return false;
  417. case RGB_VAD:
  418. // Split keyboards need to trigger on key-up for edge-case issue
  419. #ifndef SPLIT_KEYBOARD
  420. if (record->event.pressed) {
  421. #else
  422. if (!record->event.pressed) {
  423. #endif
  424. rgblight_decrease_val();
  425. #ifdef SPLIT_KEYBOARD
  426. RGB_DIRTY = true;
  427. #endif
  428. }
  429. return false;
  430. case RGB_SPI:
  431. if (record->event.pressed) {
  432. rgblight_increase_speed();
  433. }
  434. return false;
  435. case RGB_SPD:
  436. if (record->event.pressed) {
  437. rgblight_decrease_speed();
  438. }
  439. return false;
  440. case RGB_MODE_PLAIN:
  441. if (record->event.pressed) {
  442. rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
  443. #ifdef SPLIT_KEYBOARD
  444. RGB_DIRTY = true;
  445. #endif
  446. }
  447. return false;
  448. case RGB_MODE_BREATHE:
  449. #ifdef RGBLIGHT_EFFECT_BREATHING
  450. if (record->event.pressed) {
  451. if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
  452. (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
  453. rgblight_step();
  454. } else {
  455. rgblight_mode(RGBLIGHT_MODE_BREATHING);
  456. }
  457. }
  458. #endif
  459. return false;
  460. case RGB_MODE_RAINBOW:
  461. #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
  462. if (record->event.pressed) {
  463. if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
  464. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
  465. rgblight_step();
  466. } else {
  467. rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
  468. }
  469. }
  470. #endif
  471. return false;
  472. case RGB_MODE_SWIRL:
  473. #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
  474. if (record->event.pressed) {
  475. if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
  476. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
  477. rgblight_step();
  478. } else {
  479. rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
  480. }
  481. }
  482. #endif
  483. return false;
  484. case RGB_MODE_SNAKE:
  485. #ifdef RGBLIGHT_EFFECT_SNAKE
  486. if (record->event.pressed) {
  487. if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
  488. (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
  489. rgblight_step();
  490. } else {
  491. rgblight_mode(RGBLIGHT_MODE_SNAKE);
  492. }
  493. }
  494. #endif
  495. return false;
  496. case RGB_MODE_KNIGHT:
  497. #ifdef RGBLIGHT_EFFECT_KNIGHT
  498. if (record->event.pressed) {
  499. if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
  500. (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
  501. rgblight_step();
  502. } else {
  503. rgblight_mode(RGBLIGHT_MODE_KNIGHT);
  504. }
  505. }
  506. #endif
  507. return false;
  508. case RGB_MODE_XMAS:
  509. #ifdef RGBLIGHT_EFFECT_CHRISTMAS
  510. if (record->event.pressed) {
  511. rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
  512. }
  513. #endif
  514. return false;
  515. case RGB_MODE_GRADIENT:
  516. #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
  517. if (record->event.pressed) {
  518. if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
  519. (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
  520. rgblight_step();
  521. } else {
  522. rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
  523. }
  524. }
  525. #endif
  526. return false;
  527. case RGB_MODE_RGBTEST:
  528. #ifdef RGBLIGHT_EFFECT_RGB_TEST
  529. if (record->event.pressed) {
  530. rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
  531. }
  532. #endif
  533. return false;
  534. #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  535. #ifdef VELOCIKEY_ENABLE
  536. case VLK_TOG:
  537. if (record->event.pressed) {
  538. velocikey_toggle();
  539. }
  540. return false;
  541. #endif
  542. #ifdef PROTOCOL_LUFA
  543. case OUT_AUTO:
  544. if (record->event.pressed) {
  545. set_output(OUTPUT_AUTO);
  546. }
  547. return false;
  548. case OUT_USB:
  549. if (record->event.pressed) {
  550. set_output(OUTPUT_USB);
  551. }
  552. return false;
  553. #ifdef BLUETOOTH_ENABLE
  554. case OUT_BT:
  555. if (record->event.pressed) {
  556. set_output(OUTPUT_BLUETOOTH);
  557. }
  558. return false;
  559. #endif
  560. #endif
  561. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  562. if (record->event.pressed) {
  563. // MAGIC actions (BOOTMAGIC without the boot)
  564. if (!eeconfig_is_enabled()) {
  565. eeconfig_init();
  566. }
  567. /* keymap config */
  568. keymap_config.raw = eeconfig_read_keymap();
  569. switch (keycode)
  570. {
  571. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  572. keymap_config.swap_control_capslock = true;
  573. break;
  574. case MAGIC_CAPSLOCK_TO_CONTROL:
  575. keymap_config.capslock_to_control = true;
  576. break;
  577. case MAGIC_SWAP_LALT_LGUI:
  578. keymap_config.swap_lalt_lgui = true;
  579. break;
  580. case MAGIC_SWAP_RALT_RGUI:
  581. keymap_config.swap_ralt_rgui = true;
  582. break;
  583. case MAGIC_NO_GUI:
  584. keymap_config.no_gui = true;
  585. break;
  586. case MAGIC_SWAP_GRAVE_ESC:
  587. keymap_config.swap_grave_esc = true;
  588. break;
  589. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  590. keymap_config.swap_backslash_backspace = true;
  591. break;
  592. case MAGIC_HOST_NKRO:
  593. keymap_config.nkro = true;
  594. break;
  595. case MAGIC_SWAP_ALT_GUI:
  596. keymap_config.swap_lalt_lgui = true;
  597. keymap_config.swap_ralt_rgui = true;
  598. #ifdef AUDIO_ENABLE
  599. PLAY_SONG(ag_swap_song);
  600. #endif
  601. break;
  602. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  603. keymap_config.swap_control_capslock = false;
  604. break;
  605. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  606. keymap_config.capslock_to_control = false;
  607. break;
  608. case MAGIC_UNSWAP_LALT_LGUI:
  609. keymap_config.swap_lalt_lgui = false;
  610. break;
  611. case MAGIC_UNSWAP_RALT_RGUI:
  612. keymap_config.swap_ralt_rgui = false;
  613. break;
  614. case MAGIC_UNNO_GUI:
  615. keymap_config.no_gui = false;
  616. break;
  617. case MAGIC_UNSWAP_GRAVE_ESC:
  618. keymap_config.swap_grave_esc = false;
  619. break;
  620. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  621. keymap_config.swap_backslash_backspace = false;
  622. break;
  623. case MAGIC_UNHOST_NKRO:
  624. keymap_config.nkro = false;
  625. break;
  626. case MAGIC_UNSWAP_ALT_GUI:
  627. keymap_config.swap_lalt_lgui = false;
  628. keymap_config.swap_ralt_rgui = false;
  629. #ifdef AUDIO_ENABLE
  630. PLAY_SONG(ag_norm_song);
  631. #endif
  632. break;
  633. case MAGIC_TOGGLE_ALT_GUI:
  634. keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
  635. keymap_config.swap_ralt_rgui = !keymap_config.swap_ralt_rgui;
  636. #ifdef AUDIO_ENABLE
  637. if (keymap_config.swap_ralt_rgui) {
  638. PLAY_SONG(ag_swap_song);
  639. } else {
  640. PLAY_SONG(ag_norm_song);
  641. }
  642. #endif
  643. break;
  644. case MAGIC_TOGGLE_NKRO:
  645. keymap_config.nkro = !keymap_config.nkro;
  646. break;
  647. default:
  648. break;
  649. }
  650. eeconfig_update_keymap(keymap_config.raw);
  651. clear_keyboard(); // clear to prevent stuck keys
  652. return false;
  653. }
  654. break;
  655. case KC_LSPO: {
  656. if (record->event.pressed) {
  657. shift_interrupted[0] = false;
  658. scs_timer[0] = timer_read ();
  659. register_mods(MOD_BIT(KC_LSFT));
  660. }
  661. else {
  662. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  663. if (get_mods() & MOD_BIT(RSPC_MOD)) {
  664. shift_interrupted[0] = true;
  665. shift_interrupted[1] = true;
  666. }
  667. #endif
  668. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  669. #ifdef DISABLE_SPACE_CADET_MODIFIER
  670. unregister_mods(MOD_BIT(KC_LSFT));
  671. #else
  672. if( LSPO_MOD != KC_LSFT ){
  673. unregister_mods(MOD_BIT(KC_LSFT));
  674. register_mods(MOD_BIT(LSPO_MOD));
  675. }
  676. #endif
  677. register_code(LSPO_KEY);
  678. unregister_code(LSPO_KEY);
  679. #ifndef DISABLE_SPACE_CADET_MODIFIER
  680. if( LSPO_MOD != KC_LSFT ){
  681. unregister_mods(MOD_BIT(LSPO_MOD));
  682. }
  683. #endif
  684. }
  685. unregister_mods(MOD_BIT(KC_LSFT));
  686. }
  687. return false;
  688. }
  689. case KC_RSPC: {
  690. if (record->event.pressed) {
  691. shift_interrupted[1] = false;
  692. scs_timer[1] = timer_read ();
  693. register_mods(MOD_BIT(KC_RSFT));
  694. }
  695. else {
  696. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  697. if (get_mods() & MOD_BIT(LSPO_MOD)) {
  698. shift_interrupted[0] = true;
  699. shift_interrupted[1] = true;
  700. }
  701. #endif
  702. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  703. #ifdef DISABLE_SPACE_CADET_MODIFIER
  704. unregister_mods(MOD_BIT(KC_RSFT));
  705. #else
  706. if( RSPC_MOD != KC_RSFT ){
  707. unregister_mods(MOD_BIT(KC_RSFT));
  708. register_mods(MOD_BIT(RSPC_MOD));
  709. }
  710. #endif
  711. register_code(RSPC_KEY);
  712. unregister_code(RSPC_KEY);
  713. #ifndef DISABLE_SPACE_CADET_MODIFIER
  714. if ( RSPC_MOD != KC_RSFT ){
  715. unregister_mods(MOD_BIT(RSPC_MOD));
  716. }
  717. #endif
  718. }
  719. unregister_mods(MOD_BIT(KC_RSFT));
  720. }
  721. return false;
  722. }
  723. case KC_SFTENT: {
  724. if (record->event.pressed) {
  725. shift_interrupted[1] = false;
  726. scs_timer[1] = timer_read ();
  727. register_mods(MOD_BIT(KC_RSFT));
  728. }
  729. else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  730. unregister_mods(MOD_BIT(KC_RSFT));
  731. register_code(SFTENT_KEY);
  732. unregister_code(SFTENT_KEY);
  733. }
  734. else {
  735. unregister_mods(MOD_BIT(KC_RSFT));
  736. }
  737. return false;
  738. }
  739. case GRAVE_ESC: {
  740. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  741. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  742. #ifdef GRAVE_ESC_ALT_OVERRIDE
  743. // if ALT is pressed, ESC is always sent
  744. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  745. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  746. shifted = 0;
  747. }
  748. #endif
  749. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  750. // if CTRL is pressed, ESC is always sent
  751. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  752. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  753. shifted = 0;
  754. }
  755. #endif
  756. #ifdef GRAVE_ESC_GUI_OVERRIDE
  757. // if GUI is pressed, ESC is always sent
  758. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  759. shifted = 0;
  760. }
  761. #endif
  762. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  763. // if SHIFT is pressed, ESC is always sent
  764. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  765. shifted = 0;
  766. }
  767. #endif
  768. if (record->event.pressed) {
  769. grave_esc_was_shifted = shifted;
  770. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  771. }
  772. else {
  773. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  774. }
  775. send_keyboard_report();
  776. return false;
  777. }
  778. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  779. case BL_BRTG: {
  780. if (record->event.pressed)
  781. breathing_toggle();
  782. return false;
  783. }
  784. #endif
  785. default: {
  786. shift_interrupted[0] = true;
  787. shift_interrupted[1] = true;
  788. break;
  789. }
  790. }
  791. return process_action_kb(record);
  792. }
  793. __attribute__ ((weak))
  794. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  795. 0, 0, 0, 0, 0, 0, 0, 0,
  796. 0, 0, 0, 0, 0, 0, 0, 0,
  797. 0, 0, 0, 0, 0, 0, 0, 0,
  798. 0, 0, 0, 0, 0, 0, 0, 0,
  799. 0, 1, 1, 1, 1, 1, 1, 0,
  800. 1, 1, 1, 1, 0, 0, 0, 0,
  801. 0, 0, 0, 0, 0, 0, 0, 0,
  802. 0, 0, 1, 0, 1, 0, 1, 1,
  803. 1, 1, 1, 1, 1, 1, 1, 1,
  804. 1, 1, 1, 1, 1, 1, 1, 1,
  805. 1, 1, 1, 1, 1, 1, 1, 1,
  806. 1, 1, 1, 0, 0, 0, 1, 1,
  807. 0, 0, 0, 0, 0, 0, 0, 0,
  808. 0, 0, 0, 0, 0, 0, 0, 0,
  809. 0, 0, 0, 0, 0, 0, 0, 0,
  810. 0, 0, 0, 1, 1, 1, 1, 0
  811. };
  812. __attribute__ ((weak))
  813. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  814. 0, 0, 0, 0, 0, 0, 0, 0,
  815. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  816. 0, 0, 0, 0, 0, 0, 0, 0,
  817. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  818. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  819. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  820. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  821. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  822. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  823. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  824. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  825. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  826. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  827. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  828. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  829. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  830. };
  831. void send_string(const char *str) {
  832. send_string_with_delay(str, 0);
  833. }
  834. void send_string_P(const char *str) {
  835. send_string_with_delay_P(str, 0);
  836. }
  837. void send_string_with_delay(const char *str, uint8_t interval) {
  838. while (1) {
  839. char ascii_code = *str;
  840. if (!ascii_code) break;
  841. if (ascii_code == SS_TAP_CODE) {
  842. // tap
  843. uint8_t keycode = *(++str);
  844. register_code(keycode);
  845. unregister_code(keycode);
  846. } else if (ascii_code == SS_DOWN_CODE) {
  847. // down
  848. uint8_t keycode = *(++str);
  849. register_code(keycode);
  850. } else if (ascii_code == SS_UP_CODE) {
  851. // up
  852. uint8_t keycode = *(++str);
  853. unregister_code(keycode);
  854. } else {
  855. send_char(ascii_code);
  856. }
  857. ++str;
  858. // interval
  859. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  860. }
  861. }
  862. void send_string_with_delay_P(const char *str, uint8_t interval) {
  863. while (1) {
  864. char ascii_code = pgm_read_byte(str);
  865. if (!ascii_code) break;
  866. if (ascii_code == SS_TAP_CODE) {
  867. // tap
  868. uint8_t keycode = pgm_read_byte(++str);
  869. register_code(keycode);
  870. unregister_code(keycode);
  871. } else if (ascii_code == SS_DOWN_CODE) {
  872. // down
  873. uint8_t keycode = pgm_read_byte(++str);
  874. register_code(keycode);
  875. } else if (ascii_code == SS_UP_CODE) {
  876. // up
  877. uint8_t keycode = pgm_read_byte(++str);
  878. unregister_code(keycode);
  879. } else {
  880. send_char(ascii_code);
  881. }
  882. ++str;
  883. // interval
  884. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  885. }
  886. }
  887. void send_char(char ascii_code) {
  888. uint8_t keycode;
  889. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  890. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  891. register_code(KC_LSFT);
  892. register_code(keycode);
  893. unregister_code(keycode);
  894. unregister_code(KC_LSFT);
  895. } else {
  896. register_code(keycode);
  897. unregister_code(keycode);
  898. }
  899. }
  900. void set_single_persistent_default_layer(uint8_t default_layer) {
  901. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  902. PLAY_SONG(default_layer_songs[default_layer]);
  903. #endif
  904. eeconfig_update_default_layer(1U<<default_layer);
  905. default_layer_set(1U<<default_layer);
  906. }
  907. uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  908. uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  909. uint32_t mask3 = 1UL << layer3;
  910. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  911. }
  912. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  913. layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
  914. }
  915. void tap_random_base64(void) {
  916. #if defined(__AVR_ATmega32U4__)
  917. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  918. #else
  919. uint8_t key = rand() % 64;
  920. #endif
  921. switch (key) {
  922. case 0 ... 25:
  923. register_code(KC_LSFT);
  924. register_code(key + KC_A);
  925. unregister_code(key + KC_A);
  926. unregister_code(KC_LSFT);
  927. break;
  928. case 26 ... 51:
  929. register_code(key - 26 + KC_A);
  930. unregister_code(key - 26 + KC_A);
  931. break;
  932. case 52:
  933. register_code(KC_0);
  934. unregister_code(KC_0);
  935. break;
  936. case 53 ... 61:
  937. register_code(key - 53 + KC_1);
  938. unregister_code(key - 53 + KC_1);
  939. break;
  940. case 62:
  941. register_code(KC_LSFT);
  942. register_code(KC_EQL);
  943. unregister_code(KC_EQL);
  944. unregister_code(KC_LSFT);
  945. break;
  946. case 63:
  947. register_code(KC_SLSH);
  948. unregister_code(KC_SLSH);
  949. break;
  950. }
  951. }
  952. __attribute__((weak))
  953. void bootmagic_lite(void) {
  954. // The lite version of TMK's bootmagic based on Wilba.
  955. // 100% less potential for accidentally making the
  956. // keyboard do stupid things.
  957. // We need multiple scans because debouncing can't be turned off.
  958. matrix_scan();
  959. #if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0
  960. wait_ms(DEBOUNCING_DELAY * 2);
  961. #elif defined(DEBOUNCE) && DEBOUNCE > 0
  962. wait_ms(DEBOUNCE * 2);
  963. #else
  964. wait_ms(30);
  965. #endif
  966. matrix_scan();
  967. // If the Esc and space bar are held down on power up,
  968. // reset the EEPROM valid state and jump to bootloader.
  969. // Assumes Esc is at [0,0].
  970. // This isn't very generalized, but we need something that doesn't
  971. // rely on user's keymaps in firmware or EEPROM.
  972. if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
  973. eeconfig_disable();
  974. // Jump to bootloader.
  975. bootloader_jump();
  976. }
  977. }
  978. void matrix_init_quantum() {
  979. #ifdef BOOTMAGIC_LITE
  980. bootmagic_lite();
  981. #endif
  982. if (!eeconfig_is_enabled()) {
  983. eeconfig_init();
  984. }
  985. #ifdef BACKLIGHT_ENABLE
  986. #ifdef LED_MATRIX_ENABLE
  987. led_matrix_init();
  988. #else
  989. backlight_init_ports();
  990. #endif
  991. #endif
  992. #ifdef AUDIO_ENABLE
  993. audio_init();
  994. #endif
  995. #ifdef RGB_MATRIX_ENABLE
  996. rgb_matrix_init();
  997. #endif
  998. #ifdef ENCODER_ENABLE
  999. encoder_init();
  1000. #endif
  1001. #if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
  1002. unicode_input_mode_init();
  1003. #endif
  1004. #ifdef HAPTIC_ENABLE
  1005. haptic_init();
  1006. #endif
  1007. matrix_init_kb();
  1008. }
  1009. uint8_t rgb_matrix_task_counter = 0;
  1010. #ifndef RGB_MATRIX_SKIP_FRAMES
  1011. #define RGB_MATRIX_SKIP_FRAMES 1
  1012. #endif
  1013. void matrix_scan_quantum() {
  1014. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  1015. matrix_scan_music();
  1016. #endif
  1017. #ifdef TAP_DANCE_ENABLE
  1018. matrix_scan_tap_dance();
  1019. #endif
  1020. #ifdef COMBO_ENABLE
  1021. matrix_scan_combo();
  1022. #endif
  1023. #if defined(BACKLIGHT_ENABLE)
  1024. #if defined(LED_MATRIX_ENABLE)
  1025. led_matrix_task();
  1026. #elif defined(BACKLIGHT_PIN)
  1027. backlight_task();
  1028. #endif
  1029. #endif
  1030. #ifdef RGB_MATRIX_ENABLE
  1031. rgb_matrix_task();
  1032. if (rgb_matrix_task_counter == 0) {
  1033. rgb_matrix_update_pwm_buffers();
  1034. }
  1035. rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
  1036. #endif
  1037. #ifdef ENCODER_ENABLE
  1038. encoder_read();
  1039. #endif
  1040. #ifdef HAPTIC_ENABLE
  1041. haptic_task();
  1042. #endif
  1043. matrix_scan_kb();
  1044. }
  1045. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  1046. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  1047. // depending on the pin, we use a different output compare unit
  1048. #if BACKLIGHT_PIN == B7
  1049. # define TCCRxA TCCR1A
  1050. # define TCCRxB TCCR1B
  1051. # define COMxx1 COM1C1
  1052. # define OCRxx OCR1C
  1053. # define ICRx ICR1
  1054. #elif BACKLIGHT_PIN == B6
  1055. # define TCCRxA TCCR1A
  1056. # define TCCRxB TCCR1B
  1057. # define COMxx1 COM1B1
  1058. # define OCRxx OCR1B
  1059. # define ICRx ICR1
  1060. #elif BACKLIGHT_PIN == B5
  1061. # define TCCRxA TCCR1A
  1062. # define TCCRxB TCCR1B
  1063. # define COMxx1 COM1A1
  1064. # define OCRxx OCR1A
  1065. # define ICRx ICR1
  1066. #elif BACKLIGHT_PIN == C6
  1067. # define TCCRxA TCCR3A
  1068. # define TCCRxB TCCR3B
  1069. # define COMxx1 COM1A1
  1070. # define OCRxx OCR3A
  1071. # define ICRx ICR3
  1072. #else
  1073. # define NO_HARDWARE_PWM
  1074. #endif
  1075. #ifndef BACKLIGHT_ON_STATE
  1076. #define BACKLIGHT_ON_STATE 0
  1077. #endif
  1078. #ifdef NO_HARDWARE_PWM // pwm through software
  1079. __attribute__ ((weak))
  1080. void backlight_init_ports(void)
  1081. {
  1082. // Setup backlight pin as output and output to on state.
  1083. // DDRx |= n
  1084. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  1085. #if BACKLIGHT_ON_STATE == 0
  1086. // PORTx &= ~n
  1087. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1088. #else
  1089. // PORTx |= n
  1090. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1091. #endif
  1092. }
  1093. __attribute__ ((weak))
  1094. void backlight_set(uint8_t level) {}
  1095. uint8_t backlight_tick = 0;
  1096. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1097. void backlight_task(void) {
  1098. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  1099. #if BACKLIGHT_ON_STATE == 0
  1100. // PORTx &= ~n
  1101. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1102. #else
  1103. // PORTx |= n
  1104. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1105. #endif
  1106. } else {
  1107. #if BACKLIGHT_ON_STATE == 0
  1108. // PORTx |= n
  1109. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1110. #else
  1111. // PORTx &= ~n
  1112. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1113. #endif
  1114. }
  1115. backlight_tick = (backlight_tick + 1) % 16;
  1116. }
  1117. #endif
  1118. #ifdef BACKLIGHT_BREATHING
  1119. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1120. #error "Backlight breathing only available with hardware PWM. Please disable."
  1121. #endif
  1122. #endif
  1123. #else // pwm through timer
  1124. #define TIMER_TOP 0xFFFFU
  1125. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  1126. static uint16_t cie_lightness(uint16_t v) {
  1127. if (v <= 5243) // if below 8% of max
  1128. return v / 9; // same as dividing by 900%
  1129. else {
  1130. uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  1131. // to get a useful result with integer division, we shift left in the expression above
  1132. // and revert what we've done again after squaring.
  1133. y = y * y * y >> 8;
  1134. if (y > 0xFFFFUL) // prevent overflow
  1135. return 0xFFFFU;
  1136. else
  1137. return (uint16_t) y;
  1138. }
  1139. }
  1140. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  1141. static inline void set_pwm(uint16_t val) {
  1142. OCRxx = val;
  1143. }
  1144. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1145. __attribute__ ((weak))
  1146. void backlight_set(uint8_t level) {
  1147. if (level > BACKLIGHT_LEVELS)
  1148. level = BACKLIGHT_LEVELS;
  1149. if (level == 0) {
  1150. // Turn off PWM control on backlight pin
  1151. TCCRxA &= ~(_BV(COMxx1));
  1152. } else {
  1153. // Turn on PWM control of backlight pin
  1154. TCCRxA |= _BV(COMxx1);
  1155. }
  1156. // Set the brightness
  1157. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  1158. }
  1159. void backlight_task(void) {}
  1160. #endif // BACKLIGHT_CUSTOM_DRIVER
  1161. #ifdef BACKLIGHT_BREATHING
  1162. #define BREATHING_NO_HALT 0
  1163. #define BREATHING_HALT_OFF 1
  1164. #define BREATHING_HALT_ON 2
  1165. #define BREATHING_STEPS 128
  1166. static uint8_t breathing_period = BREATHING_PERIOD;
  1167. static uint8_t breathing_halt = BREATHING_NO_HALT;
  1168. static uint16_t breathing_counter = 0;
  1169. bool is_breathing(void) {
  1170. return !!(TIMSK1 & _BV(TOIE1));
  1171. }
  1172. #define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
  1173. #define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
  1174. #define breathing_min() do {breathing_counter = 0;} while (0)
  1175. #define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
  1176. void breathing_enable(void)
  1177. {
  1178. breathing_counter = 0;
  1179. breathing_halt = BREATHING_NO_HALT;
  1180. breathing_interrupt_enable();
  1181. }
  1182. void breathing_pulse(void)
  1183. {
  1184. if (get_backlight_level() == 0)
  1185. breathing_min();
  1186. else
  1187. breathing_max();
  1188. breathing_halt = BREATHING_HALT_ON;
  1189. breathing_interrupt_enable();
  1190. }
  1191. void breathing_disable(void)
  1192. {
  1193. breathing_interrupt_disable();
  1194. // Restore backlight level
  1195. backlight_set(get_backlight_level());
  1196. }
  1197. void breathing_self_disable(void)
  1198. {
  1199. if (get_backlight_level() == 0)
  1200. breathing_halt = BREATHING_HALT_OFF;
  1201. else
  1202. breathing_halt = BREATHING_HALT_ON;
  1203. }
  1204. void breathing_toggle(void) {
  1205. if (is_breathing())
  1206. breathing_disable();
  1207. else
  1208. breathing_enable();
  1209. }
  1210. void breathing_period_set(uint8_t value)
  1211. {
  1212. if (!value)
  1213. value = 1;
  1214. breathing_period = value;
  1215. }
  1216. void breathing_period_default(void) {
  1217. breathing_period_set(BREATHING_PERIOD);
  1218. }
  1219. void breathing_period_inc(void)
  1220. {
  1221. breathing_period_set(breathing_period+1);
  1222. }
  1223. void breathing_period_dec(void)
  1224. {
  1225. breathing_period_set(breathing_period-1);
  1226. }
  1227. /* To generate breathing curve in python:
  1228. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  1229. */
  1230. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1231. // Use this before the cie_lightness function.
  1232. static inline uint16_t scale_backlight(uint16_t v) {
  1233. return v / BACKLIGHT_LEVELS * get_backlight_level();
  1234. }
  1235. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  1236. * about 244 times per second.
  1237. */
  1238. ISR(TIMER1_OVF_vect)
  1239. {
  1240. uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  1241. // resetting after one period to prevent ugly reset at overflow.
  1242. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  1243. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  1244. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
  1245. ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  1246. {
  1247. breathing_interrupt_disable();
  1248. }
  1249. set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  1250. }
  1251. #endif // BACKLIGHT_BREATHING
  1252. __attribute__ ((weak))
  1253. void backlight_init_ports(void)
  1254. {
  1255. // Setup backlight pin as output and output to on state.
  1256. // DDRx |= n
  1257. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  1258. #if BACKLIGHT_ON_STATE == 0
  1259. // PORTx &= ~n
  1260. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1261. #else
  1262. // PORTx |= n
  1263. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1264. #endif
  1265. // I could write a wall of text here to explain... but TL;DW
  1266. // Go read the ATmega32u4 datasheet.
  1267. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1268. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1269. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1270. // (i.e. start high, go low when counter matches.)
  1271. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1272. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1273. /*
  1274. 14.8.3:
  1275. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1276. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1277. */
  1278. TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
  1279. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1280. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1281. ICRx = TIMER_TOP;
  1282. backlight_init();
  1283. #ifdef BACKLIGHT_BREATHING
  1284. breathing_enable();
  1285. #endif
  1286. }
  1287. #endif // NO_HARDWARE_PWM
  1288. #else // backlight
  1289. __attribute__ ((weak))
  1290. void backlight_init_ports(void) {}
  1291. __attribute__ ((weak))
  1292. void backlight_set(uint8_t level) {}
  1293. #endif // backlight
  1294. #ifdef HD44780_ENABLED
  1295. #include "hd44780.h"
  1296. #endif
  1297. // Functions for spitting out values
  1298. //
  1299. void send_dword(uint32_t number) { // this might not actually work
  1300. uint16_t word = (number >> 16);
  1301. send_word(word);
  1302. send_word(number & 0xFFFFUL);
  1303. }
  1304. void send_word(uint16_t number) {
  1305. uint8_t byte = number >> 8;
  1306. send_byte(byte);
  1307. send_byte(number & 0xFF);
  1308. }
  1309. void send_byte(uint8_t number) {
  1310. uint8_t nibble = number >> 4;
  1311. send_nibble(nibble);
  1312. send_nibble(number & 0xF);
  1313. }
  1314. void send_nibble(uint8_t number) {
  1315. switch (number) {
  1316. case 0:
  1317. register_code(KC_0);
  1318. unregister_code(KC_0);
  1319. break;
  1320. case 1 ... 9:
  1321. register_code(KC_1 + (number - 1));
  1322. unregister_code(KC_1 + (number - 1));
  1323. break;
  1324. case 0xA ... 0xF:
  1325. register_code(KC_A + (number - 0xA));
  1326. unregister_code(KC_A + (number - 0xA));
  1327. break;
  1328. }
  1329. }
  1330. __attribute__((weak))
  1331. uint16_t hex_to_keycode(uint8_t hex)
  1332. {
  1333. hex = hex & 0xF;
  1334. if (hex == 0x0) {
  1335. return KC_0;
  1336. } else if (hex < 0xA) {
  1337. return KC_1 + (hex - 0x1);
  1338. } else {
  1339. return KC_A + (hex - 0xA);
  1340. }
  1341. }
  1342. void api_send_unicode(uint32_t unicode) {
  1343. #ifdef API_ENABLE
  1344. uint8_t chunk[4];
  1345. dword_to_bytes(unicode, chunk);
  1346. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1347. #endif
  1348. }
  1349. __attribute__ ((weak))
  1350. void led_set_user(uint8_t usb_led) {
  1351. }
  1352. __attribute__ ((weak))
  1353. void led_set_kb(uint8_t usb_led) {
  1354. led_set_user(usb_led);
  1355. }
  1356. __attribute__ ((weak))
  1357. void led_init_ports(void)
  1358. {
  1359. }
  1360. __attribute__ ((weak))
  1361. void led_set(uint8_t usb_led)
  1362. {
  1363. // Example LED Code
  1364. //
  1365. // // Using PE6 Caps Lock LED
  1366. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1367. // {
  1368. // // Output high.
  1369. // DDRE |= (1<<6);
  1370. // PORTE |= (1<<6);
  1371. // }
  1372. // else
  1373. // {
  1374. // // Output low.
  1375. // DDRE &= ~(1<<6);
  1376. // PORTE &= ~(1<<6);
  1377. // }
  1378. #if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE)
  1379. // Use backlight as Caps Lock indicator
  1380. uint8_t bl_toggle_lvl = 0;
  1381. if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) {
  1382. // Turning Caps Lock ON and backlight is disabled in config
  1383. // Toggling backlight to the brightest level
  1384. bl_toggle_lvl = BACKLIGHT_LEVELS;
  1385. } else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) {
  1386. // Turning Caps Lock OFF and backlight is enabled in config
  1387. // Toggling backlight and restoring config level
  1388. bl_toggle_lvl = backlight_config.level;
  1389. }
  1390. // Set level without modify backlight_config to keep ability to restore state
  1391. backlight_set(bl_toggle_lvl);
  1392. #endif
  1393. led_set_kb(usb_led);
  1394. }
  1395. //------------------------------------------------------------------------------
  1396. // Override these functions in your keymap file to play different tunes on
  1397. // different events such as startup and bootloader jump
  1398. __attribute__ ((weak))
  1399. void startup_user() {}
  1400. __attribute__ ((weak))
  1401. void shutdown_user() {}
  1402. //------------------------------------------------------------------------------