spi_master.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. /* Copyright 2020 Nick Brassel (tzarc)
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 3 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  15. */
  16. #include "spi_master.h"
  17. #include "timer.h"
  18. static pin_t currentSlavePin = NO_PIN;
  19. #if defined(K20x) || defined(KL2x) || defined(RP2040)
  20. static SPIConfig spiConfig = {NULL, 0, 0, 0};
  21. #else
  22. static SPIConfig spiConfig = {false, NULL, 0, 0, 0, 0};
  23. #endif
  24. __attribute__((weak)) void spi_init(void) {
  25. static bool is_initialised = false;
  26. if (!is_initialised) {
  27. is_initialised = true;
  28. // Try releasing special pins for a short time
  29. setPinInput(SPI_SCK_PIN);
  30. setPinInput(SPI_MOSI_PIN);
  31. setPinInput(SPI_MISO_PIN);
  32. chThdSleepMilliseconds(10);
  33. #if defined(USE_GPIOV1)
  34. palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), SPI_SCK_PAL_MODE);
  35. palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), SPI_MOSI_PAL_MODE);
  36. palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), SPI_MISO_PAL_MODE);
  37. #else
  38. palSetPadMode(PAL_PORT(SPI_SCK_PIN), PAL_PAD(SPI_SCK_PIN), PAL_MODE_ALTERNATE(SPI_SCK_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL | PAL_OUTPUT_SPEED_HIGHEST);
  39. palSetPadMode(PAL_PORT(SPI_MOSI_PIN), PAL_PAD(SPI_MOSI_PIN), PAL_MODE_ALTERNATE(SPI_MOSI_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL | PAL_OUTPUT_SPEED_HIGHEST);
  40. palSetPadMode(PAL_PORT(SPI_MISO_PIN), PAL_PAD(SPI_MISO_PIN), PAL_MODE_ALTERNATE(SPI_MISO_PAL_MODE) | PAL_OUTPUT_TYPE_PUSHPULL | PAL_OUTPUT_SPEED_HIGHEST);
  41. #endif
  42. }
  43. }
  44. bool spi_start(pin_t slavePin, bool lsbFirst, uint8_t mode, uint16_t divisor) {
  45. if (currentSlavePin != NO_PIN || slavePin == NO_PIN) {
  46. return false;
  47. }
  48. #if !(defined(WB32F3G71xx) || defined(WB32FQ95xx))
  49. uint16_t roundedDivisor = 2;
  50. while (roundedDivisor < divisor) {
  51. roundedDivisor <<= 1;
  52. }
  53. if (roundedDivisor < 2 || roundedDivisor > 256) {
  54. return false;
  55. }
  56. #endif
  57. #if defined(K20x) || defined(KL2x)
  58. spiConfig.tar0 = SPIx_CTARn_FMSZ(7) | SPIx_CTARn_ASC(1);
  59. if (lsbFirst) {
  60. spiConfig.tar0 |= SPIx_CTARn_LSBFE;
  61. }
  62. switch (mode) {
  63. case 0:
  64. break;
  65. case 1:
  66. spiConfig.tar0 |= SPIx_CTARn_CPHA;
  67. break;
  68. case 2:
  69. spiConfig.tar0 |= SPIx_CTARn_CPOL;
  70. break;
  71. case 3:
  72. spiConfig.tar0 |= SPIx_CTARn_CPHA | SPIx_CTARn_CPOL;
  73. break;
  74. }
  75. switch (roundedDivisor) {
  76. case 2:
  77. spiConfig.tar0 |= SPIx_CTARn_BR(0);
  78. break;
  79. case 4:
  80. spiConfig.tar0 |= SPIx_CTARn_BR(1);
  81. break;
  82. case 8:
  83. spiConfig.tar0 |= SPIx_CTARn_BR(3);
  84. break;
  85. case 16:
  86. spiConfig.tar0 |= SPIx_CTARn_BR(4);
  87. break;
  88. case 32:
  89. spiConfig.tar0 |= SPIx_CTARn_BR(5);
  90. break;
  91. case 64:
  92. spiConfig.tar0 |= SPIx_CTARn_BR(6);
  93. break;
  94. case 128:
  95. spiConfig.tar0 |= SPIx_CTARn_BR(7);
  96. break;
  97. case 256:
  98. spiConfig.tar0 |= SPIx_CTARn_BR(8);
  99. break;
  100. }
  101. #elif defined(HT32)
  102. spiConfig.cr0 = SPI_CR0_SELOEN;
  103. spiConfig.cr1 = SPI_CR1_MODE | 8; // 8 bits and in master mode
  104. if (lsbFirst) {
  105. spiConfig.cr1 |= SPI_CR1_FIRSTBIT;
  106. }
  107. switch (mode) {
  108. case 0:
  109. spiConfig.cr1 |= SPI_CR1_FORMAT_MODE0;
  110. break;
  111. case 1:
  112. spiConfig.cr1 |= SPI_CR1_FORMAT_MODE1;
  113. break;
  114. case 2:
  115. spiConfig.cr1 |= SPI_CR1_FORMAT_MODE2;
  116. break;
  117. case 3:
  118. spiConfig.cr1 |= SPI_CR1_FORMAT_MODE3;
  119. break;
  120. }
  121. spiConfig.cpr = (roundedDivisor - 1) >> 1;
  122. #elif defined(WB32F3G71xx) || defined(WB32FQ95xx)
  123. if (!lsbFirst) {
  124. osalDbgAssert(lsbFirst != FALSE, "unsupported lsbFirst");
  125. }
  126. if (divisor < 1) {
  127. return false;
  128. }
  129. spiConfig.SPI_BaudRatePrescaler = (divisor << 2);
  130. switch (mode) {
  131. case 0:
  132. spiConfig.SPI_CPHA = SPI_CPHA_1Edge;
  133. spiConfig.SPI_CPOL = SPI_CPOL_Low;
  134. break;
  135. case 1:
  136. spiConfig.SPI_CPHA = SPI_CPHA_2Edge;
  137. spiConfig.SPI_CPOL = SPI_CPOL_Low;
  138. break;
  139. case 2:
  140. spiConfig.SPI_CPHA = SPI_CPHA_1Edge;
  141. spiConfig.SPI_CPOL = SPI_CPOL_High;
  142. break;
  143. case 3:
  144. spiConfig.SPI_CPHA = SPI_CPHA_2Edge;
  145. spiConfig.SPI_CPOL = SPI_CPOL_High;
  146. break;
  147. }
  148. #elif defined(MCU_RP)
  149. if (lsbFirst) {
  150. osalDbgAssert(lsbFirst == false, "RP2040s PrimeCell SPI implementation does not support sending LSB first.");
  151. }
  152. // Motorola frame format and 8bit transfer data size.
  153. spiConfig.SSPCR0 = SPI_SSPCR0_FRF_MOTOROLA | SPI_SSPCR0_DSS_8BIT;
  154. // Serial output clock = (ck_sys or ck_peri) / (SSPCPSR->CPSDVSR * (1 +
  155. // SSPCR0->SCR)). SCR is always set to zero, as QMK SPI API expects the
  156. // passed divisor to be the only value to divide the input clock by.
  157. spiConfig.SSPCPSR = roundedDivisor; // Even number from 2 to 254
  158. switch (mode) {
  159. case 0:
  160. spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low
  161. spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge
  162. break;
  163. case 1:
  164. spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPO; // Clock polarity: low
  165. spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition
  166. break;
  167. case 2:
  168. spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high
  169. spiConfig.SSPCR0 &= ~SPI_SSPCR0_SPH; // Clock phase: sample on first edge
  170. break;
  171. case 3:
  172. spiConfig.SSPCR0 |= SPI_SSPCR0_SPO; // Clock polarity: high
  173. spiConfig.SSPCR0 |= SPI_SSPCR0_SPH; // Clock phase: sample on second edge transition
  174. break;
  175. }
  176. #else
  177. spiConfig.cr1 = 0;
  178. if (lsbFirst) {
  179. spiConfig.cr1 |= SPI_CR1_LSBFIRST;
  180. }
  181. switch (mode) {
  182. case 0:
  183. break;
  184. case 1:
  185. spiConfig.cr1 |= SPI_CR1_CPHA;
  186. break;
  187. case 2:
  188. spiConfig.cr1 |= SPI_CR1_CPOL;
  189. break;
  190. case 3:
  191. spiConfig.cr1 |= SPI_CR1_CPHA | SPI_CR1_CPOL;
  192. break;
  193. }
  194. switch (roundedDivisor) {
  195. case 2:
  196. break;
  197. case 4:
  198. spiConfig.cr1 |= SPI_CR1_BR_0;
  199. break;
  200. case 8:
  201. spiConfig.cr1 |= SPI_CR1_BR_1;
  202. break;
  203. case 16:
  204. spiConfig.cr1 |= SPI_CR1_BR_1 | SPI_CR1_BR_0;
  205. break;
  206. case 32:
  207. spiConfig.cr1 |= SPI_CR1_BR_2;
  208. break;
  209. case 64:
  210. spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_0;
  211. break;
  212. case 128:
  213. spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1;
  214. break;
  215. case 256:
  216. spiConfig.cr1 |= SPI_CR1_BR_2 | SPI_CR1_BR_1 | SPI_CR1_BR_0;
  217. break;
  218. }
  219. #endif
  220. currentSlavePin = slavePin;
  221. spiConfig.ssport = PAL_PORT(slavePin);
  222. spiConfig.sspad = PAL_PAD(slavePin);
  223. setPinOutput(slavePin);
  224. spiStart(&SPI_DRIVER, &spiConfig);
  225. spiSelect(&SPI_DRIVER);
  226. return true;
  227. }
  228. spi_status_t spi_write(uint8_t data) {
  229. uint8_t rxData;
  230. spiExchange(&SPI_DRIVER, 1, &data, &rxData);
  231. return rxData;
  232. }
  233. spi_status_t spi_read(void) {
  234. uint8_t data = 0;
  235. spiReceive(&SPI_DRIVER, 1, &data);
  236. return data;
  237. }
  238. spi_status_t spi_transmit(const uint8_t *data, uint16_t length) {
  239. spiSend(&SPI_DRIVER, length, data);
  240. return SPI_STATUS_SUCCESS;
  241. }
  242. spi_status_t spi_receive(uint8_t *data, uint16_t length) {
  243. spiReceive(&SPI_DRIVER, length, data);
  244. return SPI_STATUS_SUCCESS;
  245. }
  246. void spi_stop(void) {
  247. if (currentSlavePin != NO_PIN) {
  248. spiUnselect(&SPI_DRIVER);
  249. spiStop(&SPI_DRIVER);
  250. currentSlavePin = NO_PIN;
  251. }
  252. }