matrix.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /*
  2. Copyright 2012-2018 Jun Wako, Jack Humbert, Yiancar
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include <stdint.h>
  15. #include <stdbool.h>
  16. #include "wait.h"
  17. #include "print.h"
  18. #include "debug.h"
  19. #include "util.h"
  20. #include "matrix.h"
  21. #include "debounce.h"
  22. #include "quantum.h"
  23. #if (MATRIX_COLS <= 8)
  24. # define print_matrix_header() print("\nr/c 01234567\n")
  25. # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
  26. # define matrix_bitpop(i) bitpop(matrix[i])
  27. # define ROW_SHIFTER ((uint8_t)1)
  28. #elif (MATRIX_COLS <= 16)
  29. # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
  30. # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
  31. # define matrix_bitpop(i) bitpop16(matrix[i])
  32. # define ROW_SHIFTER ((uint16_t)1)
  33. #elif (MATRIX_COLS <= 32)
  34. # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
  35. # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
  36. # define matrix_bitpop(i) bitpop32(matrix[i])
  37. # define ROW_SHIFTER ((uint32_t)1)
  38. #endif
  39. #ifdef MATRIX_MASKED
  40. extern const matrix_row_t matrix_mask[];
  41. #endif
  42. #ifdef DIRECT_PINS
  43. static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
  44. #elif (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
  45. static const pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
  46. static const pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
  47. #endif
  48. /* matrix state(1:on, 0:off) */
  49. static matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values
  50. static matrix_row_t matrix[MATRIX_ROWS]; // debounced values
  51. __attribute__((weak)) void matrix_init_quantum(void) { matrix_init_kb(); }
  52. __attribute__((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); }
  53. __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
  54. __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
  55. __attribute__((weak)) void matrix_init_user(void) {}
  56. __attribute__((weak)) void matrix_scan_user(void) {}
  57. inline uint8_t matrix_rows(void) { return MATRIX_ROWS; }
  58. inline uint8_t matrix_cols(void) { return MATRIX_COLS; }
  59. // Deprecated.
  60. bool matrix_is_modified(void) {
  61. if (debounce_active()) return false;
  62. return true;
  63. }
  64. inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); }
  65. inline matrix_row_t matrix_get_row(uint8_t row) {
  66. // Matrix mask lets you disable switches in the returned matrix data. For example, if you have a
  67. // switch blocker installed and the switch is always pressed.
  68. #ifdef MATRIX_MASKED
  69. return matrix[row] & matrix_mask[row];
  70. #else
  71. return matrix[row];
  72. #endif
  73. }
  74. void matrix_print(void) {
  75. print_matrix_header();
  76. for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
  77. phex(row);
  78. print(": ");
  79. print_matrix_row(row);
  80. print("\n");
  81. }
  82. }
  83. uint8_t matrix_key_count(void) {
  84. uint8_t count = 0;
  85. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  86. count += matrix_bitpop(i);
  87. }
  88. return count;
  89. }
  90. #ifdef DIRECT_PINS
  91. static void init_pins(void) {
  92. for (int row = 0; row < MATRIX_ROWS; row++) {
  93. for (int col = 0; col < MATRIX_COLS; col++) {
  94. pin_t pin = direct_pins[row][col];
  95. if (pin != NO_PIN) {
  96. setPinInputHigh(pin);
  97. }
  98. }
  99. }
  100. }
  101. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  102. matrix_row_t last_row_value = current_matrix[current_row];
  103. current_matrix[current_row] = 0;
  104. for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  105. pin_t pin = direct_pins[current_row][col_index];
  106. if (pin != NO_PIN) {
  107. current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
  108. }
  109. }
  110. return (last_row_value != current_matrix[current_row]);
  111. }
  112. #elif (DIODE_DIRECTION == COL2ROW)
  113. static void select_row(uint8_t row) {
  114. setPinOutput(row_pins[row]);
  115. writePinLow(row_pins[row]);
  116. }
  117. static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); }
  118. static void unselect_rows(void) {
  119. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  120. setPinInputHigh(row_pins[x]);
  121. }
  122. }
  123. static void init_pins(void) {
  124. unselect_rows();
  125. for (uint8_t x = 0; x < MATRIX_COLS; x++) {
  126. setPinInputHigh(col_pins[x]);
  127. }
  128. }
  129. static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  130. // Store last value of row prior to reading
  131. matrix_row_t last_row_value = current_matrix[current_row];
  132. // Clear data in matrix row
  133. current_matrix[current_row] = 0;
  134. // Select row and wait for row selecton to stabilize
  135. select_row(current_row);
  136. wait_us(30);
  137. // For each col...
  138. for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
  139. // Select the col pin to read (active low)
  140. uint8_t pin_state = readPin(col_pins[col_index]);
  141. // Populate the matrix row with the state of the col pin
  142. current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
  143. }
  144. // Unselect row
  145. unselect_row(current_row);
  146. return (last_row_value != current_matrix[current_row]);
  147. }
  148. #elif (DIODE_DIRECTION == ROW2COL)
  149. static void select_col(uint8_t col) {
  150. setPinOutput(col_pins[col]);
  151. writePinLow(col_pins[col]);
  152. }
  153. static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); }
  154. static void unselect_cols(void) {
  155. for (uint8_t x = 0; x < MATRIX_COLS; x++) {
  156. setPinInputHigh(col_pins[x]);
  157. }
  158. }
  159. static void init_pins(void) {
  160. unselect_cols();
  161. for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
  162. setPinInputHigh(row_pins[x]);
  163. }
  164. }
  165. static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
  166. bool matrix_changed = false;
  167. // Select col and wait for col selecton to stabilize
  168. select_col(current_col);
  169. wait_us(30);
  170. // For each row...
  171. for (uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) {
  172. // Store last value of row prior to reading
  173. matrix_row_t last_row_value = current_matrix[row_index];
  174. // Check row pin state
  175. if (readPin(row_pins[row_index]) == 0) {
  176. // Pin LO, set col bit
  177. current_matrix[row_index] |= (ROW_SHIFTER << current_col);
  178. } else {
  179. // Pin HI, clear col bit
  180. current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
  181. }
  182. // Determine if the matrix changed state
  183. if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) {
  184. matrix_changed = true;
  185. }
  186. }
  187. // Unselect col
  188. unselect_col(current_col);
  189. return matrix_changed;
  190. }
  191. #endif
  192. void matrix_init(void) {
  193. // initialize key pins
  194. init_pins();
  195. // initialize matrix state: all keys off
  196. for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
  197. raw_matrix[i] = 0;
  198. matrix[i] = 0;
  199. }
  200. debounce_init(MATRIX_ROWS);
  201. matrix_init_quantum();
  202. }
  203. uint8_t matrix_scan(void) {
  204. bool changed = false;
  205. #if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
  206. // Set row, read cols
  207. for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
  208. changed |= read_cols_on_row(raw_matrix, current_row);
  209. }
  210. #elif (DIODE_DIRECTION == ROW2COL)
  211. // Set col, read rows
  212. for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
  213. changed |= read_rows_on_col(raw_matrix, current_col);
  214. }
  215. #endif
  216. debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
  217. matrix_scan_quantum();
  218. return (uint8_t)changed;
  219. }