clks.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. Copyright 2018 Massdrop Inc.
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #include "arm_atsam_protocol.h"
  15. #include <string.h>
  16. volatile clk_t system_clks;
  17. volatile uint64_t ms_clk;
  18. uint32_t usec_delay_mult;
  19. #define USEC_DELAY_LOOP_CYCLES 3 // Sum of instruction cycles in us delay loop
  20. const uint32_t sercom_apbbase[] = {(uint32_t)SERCOM0, (uint32_t)SERCOM1, (uint32_t)SERCOM2, (uint32_t)SERCOM3, (uint32_t)SERCOM4, (uint32_t)SERCOM5};
  21. const uint8_t sercom_pchan[] = {7, 8, 23, 24, 34, 35};
  22. #define USE_DPLL_IND 0
  23. #define USE_DPLL_DEF GCLK_SOURCE_DPLL0
  24. void CLK_oscctrl_init(void) {
  25. Oscctrl *posctrl = OSCCTRL;
  26. Gclk * pgclk = GCLK;
  27. DBGC(DC_CLK_OSC_INIT_BEGIN);
  28. // default setup on por
  29. system_clks.freq_dfll = FREQ_DFLL_DEFAULT;
  30. system_clks.freq_gclk[0] = system_clks.freq_dfll;
  31. // configure and startup 16MHz xosc0
  32. posctrl->XOSCCTRL[0].bit.ENABLE = 0;
  33. posctrl->XOSCCTRL[0].bit.STARTUP = 0xD;
  34. posctrl->XOSCCTRL[0].bit.ENALC = 1;
  35. posctrl->XOSCCTRL[0].bit.IMULT = 5;
  36. posctrl->XOSCCTRL[0].bit.IPTAT = 3;
  37. posctrl->XOSCCTRL[0].bit.ONDEMAND = 0;
  38. posctrl->XOSCCTRL[0].bit.XTALEN = 1;
  39. posctrl->XOSCCTRL[0].bit.ENABLE = 1;
  40. while (posctrl->STATUS.bit.XOSCRDY0 == 0) {
  41. DBGC(DC_CLK_OSC_INIT_XOSC0_SYNC);
  42. }
  43. system_clks.freq_xosc0 = FREQ_XOSC0;
  44. // configure and startup DPLL
  45. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 0;
  46. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) {
  47. DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_DISABLE);
  48. }
  49. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.REFCLK = 2; // select XOSC0 (16MHz)
  50. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV = 7; // 16 MHz / (2 * (7 + 1)) = 1 MHz
  51. posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR = PLL_RATIO; // 1 MHz * (PLL_RATIO(47) + 1) = 48MHz
  52. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.DPLLRATIO) {
  53. DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_RATIO);
  54. }
  55. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ONDEMAND = 0;
  56. posctrl->Dpll[USE_DPLL_IND].DPLLCTRLA.bit.ENABLE = 1;
  57. while (posctrl->Dpll[USE_DPLL_IND].DPLLSYNCBUSY.bit.ENABLE) {
  58. DBGC(DC_CLK_OSC_INIT_DPLL_SYNC_ENABLE);
  59. }
  60. while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.LOCK == 0) {
  61. DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_LOCK);
  62. }
  63. while (posctrl->Dpll[USE_DPLL_IND].DPLLSTATUS.bit.CLKRDY == 0) {
  64. DBGC(DC_CLK_OSC_INIT_DPLL_WAIT_CLKRDY);
  65. }
  66. system_clks.freq_dpll[0] = (system_clks.freq_xosc0 / 2 / (posctrl->Dpll[USE_DPLL_IND].DPLLCTRLB.bit.DIV + 1)) * (posctrl->Dpll[USE_DPLL_IND].DPLLRATIO.bit.LDR + 1);
  67. // change gclk0 to DPLL
  68. pgclk->GENCTRL[GEN_DPLL0].bit.SRC = USE_DPLL_DEF;
  69. while (pgclk->SYNCBUSY.bit.GENCTRL0) {
  70. DBGC(DC_CLK_OSC_INIT_GCLK_SYNC_GENCTRL0);
  71. }
  72. system_clks.freq_gclk[0] = system_clks.freq_dpll[0];
  73. usec_delay_mult = system_clks.freq_gclk[0] / (USEC_DELAY_LOOP_CYCLES * 1000000);
  74. if (usec_delay_mult < 1) usec_delay_mult = 1; // Never allow a multiplier of zero
  75. DBGC(DC_CLK_OSC_INIT_COMPLETE);
  76. }
  77. // configure for 1MHz (1 usec timebase)
  78. // call CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
  79. uint32_t CLK_set_gclk_freq(uint8_t gclkn, uint32_t freq) {
  80. Gclk *pgclk = GCLK;
  81. DBGC(DC_CLK_SET_GCLK_FREQ_BEGIN);
  82. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  83. DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_1);
  84. }
  85. pgclk->GENCTRL[gclkn].bit.SRC = USE_DPLL_DEF;
  86. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  87. DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_2);
  88. }
  89. pgclk->GENCTRL[gclkn].bit.DIV = (uint8_t)(system_clks.freq_dpll[0] / freq);
  90. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  91. DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_3);
  92. }
  93. pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
  94. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  95. DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_4);
  96. }
  97. pgclk->GENCTRL[gclkn].bit.GENEN = 1;
  98. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  99. DBGC(DC_CLK_SET_GCLK_FREQ_SYNC_5);
  100. }
  101. system_clks.freq_gclk[gclkn] = system_clks.freq_dpll[0] / pgclk->GENCTRL[gclkn].bit.DIV;
  102. DBGC(DC_CLK_SET_GCLK_FREQ_COMPLETE);
  103. return system_clks.freq_gclk[gclkn];
  104. }
  105. void CLK_init_osc(void) {
  106. uint8_t gclkn = GEN_OSC0;
  107. Gclk * pgclk = GCLK;
  108. DBGC(DC_CLK_INIT_OSC_BEGIN);
  109. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  110. DBGC(DC_CLK_INIT_OSC_SYNC_1);
  111. }
  112. pgclk->GENCTRL[gclkn].bit.SRC = GCLK_SOURCE_XOSC0;
  113. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  114. DBGC(DC_CLK_INIT_OSC_SYNC_2);
  115. }
  116. pgclk->GENCTRL[gclkn].bit.DIV = 1;
  117. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  118. DBGC(DC_CLK_INIT_OSC_SYNC_3);
  119. }
  120. pgclk->GENCTRL[gclkn].bit.DIVSEL = 0;
  121. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  122. DBGC(DC_CLK_INIT_OSC_SYNC_4);
  123. }
  124. pgclk->GENCTRL[gclkn].bit.GENEN = 1;
  125. while (pgclk->SYNCBUSY.vec.GENCTRL) {
  126. DBGC(DC_CLK_INIT_OSC_SYNC_5);
  127. }
  128. system_clks.freq_gclk[gclkn] = system_clks.freq_xosc0;
  129. DBGC(DC_CLK_INIT_OSC_COMPLETE);
  130. }
  131. void CLK_reset_time(void) {
  132. Tc *ptc4 = TC4;
  133. Tc *ptc0 = TC0;
  134. ms_clk = 0;
  135. DBGC(DC_CLK_RESET_TIME_BEGIN);
  136. // stop counters
  137. ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
  138. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
  139. }
  140. ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
  141. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
  142. }
  143. // zero counters
  144. ptc4->COUNT16.COUNT.reg = 0;
  145. while (ptc4->COUNT16.SYNCBUSY.bit.COUNT) {
  146. }
  147. ptc0->COUNT32.COUNT.reg = 0;
  148. while (ptc0->COUNT32.SYNCBUSY.bit.COUNT) {
  149. }
  150. // start counters
  151. ptc0->COUNT32.CTRLA.bit.ENABLE = 1;
  152. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
  153. }
  154. ptc4->COUNT16.CTRLA.bit.ENABLE = 1;
  155. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
  156. }
  157. DBGC(DC_CLK_RESET_TIME_COMPLETE);
  158. }
  159. void TC4_Handler() {
  160. if (TC4->COUNT16.INTFLAG.bit.MC0) {
  161. TC4->COUNT16.INTFLAG.reg = TC_INTENCLR_MC0;
  162. ms_clk++;
  163. }
  164. }
  165. uint32_t CLK_enable_timebase(void) {
  166. Gclk * pgclk = GCLK;
  167. Mclk * pmclk = MCLK;
  168. Tc * ptc4 = TC4;
  169. Tc * ptc0 = TC0;
  170. Evsys *pevsys = EVSYS;
  171. DBGC(DC_CLK_ENABLE_TIMEBASE_BEGIN);
  172. // gclk2 highspeed time base
  173. CLK_set_gclk_freq(GEN_TC45, FREQ_TC45_DEFAULT);
  174. CLK_init_osc();
  175. // unmask TC4, sourcegclk2 to TC4
  176. pmclk->APBCMASK.bit.TC4_ = 1;
  177. pgclk->PCHCTRL[TC4_GCLK_ID].bit.GEN = GEN_TC45;
  178. pgclk->PCHCTRL[TC4_GCLK_ID].bit.CHEN = 1;
  179. // configure TC4
  180. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_BEGIN);
  181. ptc4->COUNT16.CTRLA.bit.ENABLE = 0;
  182. while (ptc4->COUNT16.SYNCBUSY.bit.ENABLE) {
  183. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_DISABLE);
  184. }
  185. ptc4->COUNT16.CTRLA.bit.SWRST = 1;
  186. while (ptc4->COUNT16.SYNCBUSY.bit.SWRST) {
  187. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_1);
  188. }
  189. while (ptc4->COUNT16.CTRLA.bit.SWRST) {
  190. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_SWRST_2);
  191. }
  192. // CTRLA defaults
  193. // CTRLB as default, counting up
  194. ptc4->COUNT16.CTRLBCLR.reg = 5;
  195. while (ptc4->COUNT16.SYNCBUSY.bit.CTRLB) {
  196. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CLTRB);
  197. }
  198. ptc4->COUNT16.CC[0].reg = 999;
  199. while (ptc4->COUNT16.SYNCBUSY.bit.CC0) {
  200. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_SYNC_CC0);
  201. }
  202. // ptc4->COUNT16.DBGCTRL.bit.DBGRUN = 1;
  203. // wave mode
  204. ptc4->COUNT16.WAVE.bit.WAVEGEN = 1; // MFRQ match frequency mode, toggle each CC match
  205. // generate event for next stage
  206. ptc4->COUNT16.EVCTRL.bit.MCEO0 = 1;
  207. NVIC_EnableIRQ(TC4_IRQn);
  208. ptc4->COUNT16.INTENSET.bit.MC0 = 1;
  209. DBGC(DC_CLK_ENABLE_TIMEBASE_TC4_COMPLETE);
  210. // unmask TC0,1, sourcegclk2 to TC0,1
  211. pmclk->APBAMASK.bit.TC0_ = 1;
  212. pgclk->PCHCTRL[TC0_GCLK_ID].bit.GEN = GEN_TC45;
  213. pgclk->PCHCTRL[TC0_GCLK_ID].bit.CHEN = 1;
  214. pmclk->APBAMASK.bit.TC1_ = 1;
  215. pgclk->PCHCTRL[TC1_GCLK_ID].bit.GEN = GEN_TC45;
  216. pgclk->PCHCTRL[TC1_GCLK_ID].bit.CHEN = 1;
  217. // configure TC0
  218. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_BEGIN);
  219. ptc0->COUNT32.CTRLA.bit.ENABLE = 0;
  220. while (ptc0->COUNT32.SYNCBUSY.bit.ENABLE) {
  221. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_DISABLE);
  222. }
  223. ptc0->COUNT32.CTRLA.bit.SWRST = 1;
  224. while (ptc0->COUNT32.SYNCBUSY.bit.SWRST) {
  225. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_1);
  226. }
  227. while (ptc0->COUNT32.CTRLA.bit.SWRST) {
  228. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_SYNC_SWRST_2);
  229. }
  230. // CTRLA as default
  231. ptc0->COUNT32.CTRLA.bit.MODE = 2; // 32 bit mode
  232. ptc0->COUNT32.EVCTRL.bit.TCEI = 1; // enable incoming events
  233. ptc0->COUNT32.EVCTRL.bit.EVACT = 2; // count events
  234. DBGC(DC_CLK_ENABLE_TIMEBASE_TC0_COMPLETE);
  235. DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_BEGIN);
  236. // configure event system
  237. pmclk->APBBMASK.bit.EVSYS_ = 1;
  238. pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.GEN = GEN_TC45;
  239. pgclk->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN = 1;
  240. pevsys->USER[44].reg = EVSYS_ID_USER_PORT_EV_0; // TC0 will get event channel 0
  241. pevsys->Channel[0].CHANNEL.bit.EDGSEL = EVSYS_CHANNEL_EDGSEL_RISING_EDGE_Val; // Rising edge
  242. pevsys->Channel[0].CHANNEL.bit.PATH = EVSYS_CHANNEL_PATH_SYNCHRONOUS_Val; // Synchronous
  243. pevsys->Channel[0].CHANNEL.bit.EVGEN = EVSYS_ID_GEN_TC4_MCX_0; // TC4 MC0
  244. DBGC(DC_CLK_ENABLE_TIMEBASE_EVSYS_COMPLETE);
  245. CLK_reset_time();
  246. ADC0_clock_init();
  247. DBGC(DC_CLK_ENABLE_TIMEBASE_COMPLETE);
  248. return 0;
  249. }
  250. void CLK_delay_us(uint32_t usec) {
  251. asm("CBZ R0, return\n\t" // If usec == 0, branch to return label
  252. );
  253. asm("MULS R0, %0\n\t" // Multiply R0(usec) by usec_delay_mult and store in R0
  254. ".balign 16\n\t" // Ensure loop is aligned for fastest performance
  255. "loop: SUBS R0, #1\n\t" // Subtract 1 from R0 and update flags (1 cycle)
  256. "BNE loop\n\t" // Branch if non-zero to loop label (2 cycles) NOTE: USEC_DELAY_LOOP_CYCLES is the sum of loop cycles
  257. "return:\n\t" // Return label
  258. : // No output registers
  259. : "r"(usec_delay_mult) // For %0
  260. );
  261. // Note: BX LR generated
  262. }
  263. void CLK_delay_ms(uint64_t msec) {
  264. msec += timer_read64();
  265. while (msec > timer_read64()) {
  266. }
  267. }
  268. void clk_enable_sercom_apbmask(int sercomn) {
  269. Mclk *pmclk = MCLK;
  270. switch (sercomn) {
  271. case 0:
  272. pmclk->APBAMASK.bit.SERCOM0_ = 1;
  273. break;
  274. case 1:
  275. pmclk->APBAMASK.bit.SERCOM1_ = 1;
  276. break;
  277. case 2:
  278. pmclk->APBBMASK.bit.SERCOM2_ = 1;
  279. break;
  280. case 3:
  281. pmclk->APBBMASK.bit.SERCOM3_ = 1;
  282. break;
  283. default:
  284. break;
  285. }
  286. }
  287. // call CLK_oscctrl_init first
  288. // call CLK_set_spi_freq(CHAN_SERCOM_SPI, FREQ_SPI_DEFAULT);
  289. uint32_t CLK_set_spi_freq(uint8_t sercomn, uint32_t freq) {
  290. DBGC(DC_CLK_SET_SPI_FREQ_BEGIN);
  291. Gclk * pgclk = GCLK;
  292. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  293. clk_enable_sercom_apbmask(sercomn);
  294. // all gclk0 for now
  295. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  296. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  297. psercom->I2CM.CTRLA.bit.SWRST = 1;
  298. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
  299. }
  300. while (psercom->I2CM.CTRLA.bit.SWRST) {
  301. }
  302. psercom->SPI.BAUD.reg = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 1);
  303. system_clks.freq_spi = system_clks.freq_gclk[0] / 2 / (psercom->SPI.BAUD.reg + 1);
  304. system_clks.freq_sercom[sercomn] = system_clks.freq_spi;
  305. DBGC(DC_CLK_SET_SPI_FREQ_COMPLETE);
  306. return system_clks.freq_spi;
  307. }
  308. // call CLK_oscctrl_init first
  309. // call CLK_set_i2c0_freq(CHAN_SERCOM_I2C0, FREQ_I2C0_DEFAULT);
  310. uint32_t CLK_set_i2c0_freq(uint8_t sercomn, uint32_t freq) {
  311. DBGC(DC_CLK_SET_I2C0_FREQ_BEGIN);
  312. Gclk * pgclk = GCLK;
  313. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  314. clk_enable_sercom_apbmask(sercomn);
  315. // all gclk0 for now
  316. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  317. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  318. psercom->I2CM.CTRLA.bit.SWRST = 1;
  319. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
  320. }
  321. while (psercom->I2CM.CTRLA.bit.SWRST) {
  322. }
  323. psercom->I2CM.BAUD.bit.BAUD = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 1);
  324. system_clks.freq_i2c0 = system_clks.freq_gclk[0] / 2 / (psercom->I2CM.BAUD.bit.BAUD + 1);
  325. system_clks.freq_sercom[sercomn] = system_clks.freq_i2c0;
  326. DBGC(DC_CLK_SET_I2C0_FREQ_COMPLETE);
  327. return system_clks.freq_i2c0;
  328. }
  329. // call CLK_oscctrl_init first
  330. // call CLK_set_i2c1_freq(CHAN_SERCOM_I2C1, FREQ_I2C1_DEFAULT);
  331. uint32_t CLK_set_i2c1_freq(uint8_t sercomn, uint32_t freq) {
  332. DBGC(DC_CLK_SET_I2C1_FREQ_BEGIN);
  333. Gclk * pgclk = GCLK;
  334. Sercom *psercom = (Sercom *)sercom_apbbase[sercomn];
  335. clk_enable_sercom_apbmask(sercomn);
  336. // all gclk0 for now
  337. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.GEN = 0;
  338. pgclk->PCHCTRL[sercom_pchan[sercomn]].bit.CHEN = 1;
  339. psercom->I2CM.CTRLA.bit.SWRST = 1;
  340. while (psercom->I2CM.SYNCBUSY.bit.SWRST) {
  341. }
  342. while (psercom->I2CM.CTRLA.bit.SWRST) {
  343. }
  344. psercom->I2CM.BAUD.bit.BAUD = (uint8_t)(system_clks.freq_gclk[0] / 2 / freq - 10);
  345. system_clks.freq_i2c1 = system_clks.freq_gclk[0] / 2 / (psercom->I2CM.BAUD.bit.BAUD + 10);
  346. system_clks.freq_sercom[sercomn] = system_clks.freq_i2c1;
  347. DBGC(DC_CLK_SET_I2C1_FREQ_COMPLETE);
  348. return system_clks.freq_i2c1;
  349. }
  350. void CLK_init(void) {
  351. DBGC(DC_CLK_INIT_BEGIN);
  352. memset((void *)&system_clks, 0, sizeof(system_clks));
  353. CLK_oscctrl_init();
  354. CLK_enable_timebase();
  355. DBGC(DC_CLK_INIT_COMPLETE);
  356. }