dynamic_keymap.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. /* Copyright 2017 Jason Williams (Wilba)
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "keymap.h" // to get keymaps[][][]
  17. #include "eeprom.h"
  18. #include "progmem.h" // to read default from flash
  19. #include "quantum.h" // for send_string()
  20. #include "dynamic_keymap.h"
  21. #include "via.h" // for default VIA_EEPROM_ADDR_END
  22. #ifndef DYNAMIC_KEYMAP_LAYER_COUNT
  23. # define DYNAMIC_KEYMAP_LAYER_COUNT 4
  24. #endif
  25. #ifndef DYNAMIC_KEYMAP_MACRO_COUNT
  26. # define DYNAMIC_KEYMAP_MACRO_COUNT 16
  27. #endif
  28. #ifndef TOTAL_EEPROM_BYTE_COUNT
  29. # error Unknown total EEPROM size. Cannot derive maximum for dynamic keymaps.
  30. #endif
  31. #ifndef DYNAMIC_KEYMAP_EEPROM_MAX_ADDR
  32. # define DYNAMIC_KEYMAP_EEPROM_MAX_ADDR (TOTAL_EEPROM_BYTE_COUNT - 1)
  33. #endif
  34. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > (TOTAL_EEPROM_BYTE_COUNT - 1)
  35. # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > " STR((TOTAL_EEPROM_BYTE_COUNT - 1))
  36. # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is configured to use more space than what is available for the selected EEPROM driver
  37. #endif
  38. // Due to usage of uint16_t check for max 65535
  39. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR > 65535
  40. # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) " > 65535"
  41. # error DYNAMIC_KEYMAP_EEPROM_MAX_ADDR must be less than 65536
  42. #endif
  43. // If DYNAMIC_KEYMAP_EEPROM_ADDR not explicitly defined in config.h,
  44. // default it start after VIA_EEPROM_CUSTOM_ADDR+VIA_EEPROM_CUSTOM_SIZE
  45. #ifndef DYNAMIC_KEYMAP_EEPROM_ADDR
  46. # ifdef VIA_EEPROM_CUSTOM_CONFIG_ADDR
  47. # define DYNAMIC_KEYMAP_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR + VIA_EEPROM_CUSTOM_CONFIG_SIZE)
  48. # else
  49. # error DYNAMIC_KEYMAP_EEPROM_ADDR not defined
  50. # endif
  51. #endif
  52. // Dynamic macro starts after dynamic keymaps
  53. #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
  54. # define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
  55. #endif
  56. // Sanity check that dynamic keymaps fit in available EEPROM
  57. // If there's not 100 bytes available for macros, then something is wrong.
  58. // The keyboard should override DYNAMIC_KEYMAP_LAYER_COUNT to reduce it,
  59. // or DYNAMIC_KEYMAP_EEPROM_MAX_ADDR to increase it, *only if* the microcontroller has
  60. // more than the default.
  61. #if DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR < 100
  62. # pragma message STR(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR) " < 100"
  63. # error Dynamic keymaps are configured to use more EEPROM than is available.
  64. #endif
  65. // Dynamic macros are stored after the keymaps and use what is available
  66. // up to and including DYNAMIC_KEYMAP_EEPROM_MAX_ADDR.
  67. #ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE
  68. # define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR - DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + 1)
  69. #endif
  70. uint8_t dynamic_keymap_get_layer_count(void) { return DYNAMIC_KEYMAP_LAYER_COUNT; }
  71. void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column) {
  72. // TODO: optimize this with some left shifts
  73. return ((void *)DYNAMIC_KEYMAP_EEPROM_ADDR) + (layer * MATRIX_ROWS * MATRIX_COLS * 2) + (row * MATRIX_COLS * 2) + (column * 2);
  74. }
  75. uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
  76. void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
  77. // Big endian, so we can read/write EEPROM directly from host if we want
  78. uint16_t keycode = eeprom_read_byte(address) << 8;
  79. keycode |= eeprom_read_byte(address + 1);
  80. return keycode;
  81. }
  82. void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
  83. void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
  84. // Big endian, so we can read/write EEPROM directly from host if we want
  85. eeprom_update_byte(address, (uint8_t)(keycode >> 8));
  86. eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
  87. }
  88. void dynamic_keymap_reset(void) {
  89. // Reset the keymaps in EEPROM to what is in flash.
  90. // All keyboards using dynamic keymaps should define a layout
  91. // for the same number of layers as DYNAMIC_KEYMAP_LAYER_COUNT.
  92. for (int layer = 0; layer < DYNAMIC_KEYMAP_LAYER_COUNT; layer++) {
  93. for (int row = 0; row < MATRIX_ROWS; row++) {
  94. for (int column = 0; column < MATRIX_COLS; column++) {
  95. dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
  96. }
  97. }
  98. }
  99. }
  100. void dynamic_keymap_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  101. uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
  102. void * source = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
  103. uint8_t *target = data;
  104. for (uint16_t i = 0; i < size; i++) {
  105. if (offset + i < dynamic_keymap_eeprom_size) {
  106. *target = eeprom_read_byte(source);
  107. } else {
  108. *target = 0x00;
  109. }
  110. source++;
  111. target++;
  112. }
  113. }
  114. void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  115. uint16_t dynamic_keymap_eeprom_size = DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2;
  116. void * target = (void *)(DYNAMIC_KEYMAP_EEPROM_ADDR + offset);
  117. uint8_t *source = data;
  118. for (uint16_t i = 0; i < size; i++) {
  119. if (offset + i < dynamic_keymap_eeprom_size) {
  120. eeprom_update_byte(target, *source);
  121. }
  122. source++;
  123. target++;
  124. }
  125. }
  126. // This overrides the one in quantum/keymap_common.c
  127. uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
  128. if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
  129. return dynamic_keymap_get_keycode(layer, key.row, key.col);
  130. } else {
  131. return KC_NO;
  132. }
  133. }
  134. uint8_t dynamic_keymap_macro_get_count(void) { return DYNAMIC_KEYMAP_MACRO_COUNT; }
  135. uint16_t dynamic_keymap_macro_get_buffer_size(void) { return DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE; }
  136. void dynamic_keymap_macro_get_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  137. void * source = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
  138. uint8_t *target = data;
  139. for (uint16_t i = 0; i < size; i++) {
  140. if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
  141. *target = eeprom_read_byte(source);
  142. } else {
  143. *target = 0x00;
  144. }
  145. source++;
  146. target++;
  147. }
  148. }
  149. void dynamic_keymap_macro_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
  150. void * target = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + offset);
  151. uint8_t *source = data;
  152. for (uint16_t i = 0; i < size; i++) {
  153. if (offset + i < DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE) {
  154. eeprom_update_byte(target, *source);
  155. }
  156. source++;
  157. target++;
  158. }
  159. }
  160. void dynamic_keymap_macro_reset(void) {
  161. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
  162. void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
  163. while (p != end) {
  164. eeprom_update_byte(p, 0);
  165. ++p;
  166. }
  167. }
  168. void dynamic_keymap_macro_send(uint8_t id) {
  169. if (id >= DYNAMIC_KEYMAP_MACRO_COUNT) {
  170. return;
  171. }
  172. // Check the last byte of the buffer.
  173. // If it's not zero, then we are in the middle
  174. // of buffer writing, possibly an aborted buffer
  175. // write. So do nothing.
  176. void *p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE - 1);
  177. if (eeprom_read_byte(p) != 0) {
  178. return;
  179. }
  180. // Skip N null characters
  181. // p will then point to the Nth macro
  182. p = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR);
  183. void *end = (void *)(DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR + DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE);
  184. while (id > 0) {
  185. // If we are past the end of the buffer, then the buffer
  186. // contents are garbage, i.e. there were not DYNAMIC_KEYMAP_MACRO_COUNT
  187. // nulls in the buffer.
  188. if (p == end) {
  189. return;
  190. }
  191. if (eeprom_read_byte(p) == 0) {
  192. --id;
  193. }
  194. ++p;
  195. }
  196. // Send the macro string one or three chars at a time
  197. // by making temporary 1 or 3 char strings
  198. char data[4] = {0, 0, 0, 0};
  199. // We already checked there was a null at the end of
  200. // the buffer, so this cannot go past the end
  201. while (1) {
  202. data[0] = eeprom_read_byte(p++);
  203. data[1] = 0;
  204. // Stop at the null terminator of this macro string
  205. if (data[0] == 0) {
  206. break;
  207. }
  208. // If the char is magic (tap, down, up),
  209. // add the next char (key to use) and send a 3 char string.
  210. if (data[0] == SS_TAP_CODE || data[0] == SS_DOWN_CODE || data[0] == SS_UP_CODE) {
  211. data[1] = data[0];
  212. data[0] = SS_QMK_PREFIX;
  213. data[2] = eeprom_read_byte(p++);
  214. if (data[2] == 0) {
  215. break;
  216. }
  217. }
  218. send_string(data);
  219. }
  220. }