transactions.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /* Copyright 2021 QMK
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include <string.h>
  17. #include <stddef.h>
  18. #include "crc.h"
  19. #include "debug.h"
  20. #include "matrix.h"
  21. #include "quantum.h"
  22. #include "transactions.h"
  23. #include "transport.h"
  24. #include "transaction_id_define.h"
  25. #define SYNC_TIMER_OFFSET 2
  26. #ifndef FORCED_SYNC_THROTTLE_MS
  27. # define FORCED_SYNC_THROTTLE_MS 100
  28. #endif // FORCED_SYNC_THROTTLE_MS
  29. #define sizeof_member(type, member) sizeof(((type *)NULL)->member)
  30. #define trans_initiator2target_initializer_cb(member, cb) \
  31. { &dummy, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), 0, 0, cb }
  32. #define trans_initiator2target_initializer(member) trans_initiator2target_initializer_cb(member, NULL)
  33. #define trans_target2initiator_initializer_cb(member, cb) \
  34. { &dummy, 0, 0, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), cb }
  35. #define trans_target2initiator_initializer(member) trans_target2initiator_initializer_cb(member, NULL)
  36. #define transport_write(id, data, length) transport_execute_transaction(id, data, length, NULL, 0)
  37. #define transport_read(id, data, length) transport_execute_transaction(id, NULL, 0, data, length)
  38. #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
  39. // Forward-declare the RPC callback handlers
  40. void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
  41. void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
  42. #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
  43. ////////////////////////////////////////////////////
  44. // Helpers
  45. bool transaction_handler_master(bool okay, matrix_row_t master_matrix[], matrix_row_t slave_matrix[], const char *prefix, bool (*handler)(matrix_row_t master_matrix[], matrix_row_t slave_matrix[])) {
  46. if (okay) {
  47. bool this_okay = true;
  48. for (int iter = 1; iter <= 10; ++iter) {
  49. if (!this_okay) {
  50. for (int i = 0; i < iter * iter; ++i) {
  51. wait_us(10);
  52. }
  53. }
  54. ATOMIC_BLOCK_FORCEON { this_okay = handler(master_matrix, slave_matrix); };
  55. if (this_okay) break;
  56. }
  57. okay &= this_okay;
  58. if (!okay) {
  59. dprintf("Failed to execute %s\n", prefix);
  60. }
  61. }
  62. return okay;
  63. }
  64. #define TRANSACTION_HANDLER_MASTER(prefix) \
  65. do { \
  66. okay &= transaction_handler_master(okay, master_matrix, slave_matrix, #prefix, &prefix##_master); \
  67. } while (0)
  68. #define TRANSACTION_HANDLER_SLAVE(prefix) \
  69. do { \
  70. ATOMIC_BLOCK_FORCEON { prefix##_slave(master_matrix, slave_matrix); }; \
  71. } while (0)
  72. inline static bool read_if_checksum_mismatch(int8_t trans_id_checksum, int8_t trans_id_retrieve, uint32_t *last_update, void *destination, const void *equiv_shmem, size_t length) {
  73. uint8_t curr_checksum;
  74. bool okay = transport_read(trans_id_checksum, &curr_checksum, sizeof(curr_checksum));
  75. if (okay && (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || curr_checksum != crc8(equiv_shmem, length))) {
  76. okay &= transport_read(trans_id_retrieve, destination, length);
  77. okay &= curr_checksum == crc8(equiv_shmem, length);
  78. if (okay) {
  79. *last_update = timer_read32();
  80. }
  81. } else {
  82. memcpy(destination, equiv_shmem, length);
  83. }
  84. return okay;
  85. }
  86. inline static bool send_if_condition(int8_t trans_id, uint32_t *last_update, bool condition, void *source, size_t length) {
  87. bool okay = true;
  88. if (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || condition) {
  89. okay &= transport_write(trans_id, source, length);
  90. if (okay) {
  91. *last_update = timer_read32();
  92. }
  93. }
  94. return okay;
  95. }
  96. inline static bool send_if_data_mismatch(int8_t trans_id, uint32_t *last_update, void *source, const void *equiv_shmem, size_t length) {
  97. // Just run a memcmp to compare the source and equivalent shmem location
  98. return send_if_condition(trans_id, last_update, (memcmp(source, equiv_shmem, length) != 0), source, length);
  99. }
  100. ////////////////////////////////////////////////////
  101. // Slave matrix
  102. static bool slave_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  103. static uint32_t last_update = 0;
  104. static matrix_row_t last_matrix[(MATRIX_ROWS) / 2] = {0}; // last successfully-read matrix, so we can replicate if there are checksum errors
  105. matrix_row_t temp_matrix[(MATRIX_ROWS) / 2]; // holding area while we test whether or not checksum is correct
  106. bool okay = read_if_checksum_mismatch(GET_SLAVE_MATRIX_CHECKSUM, GET_SLAVE_MATRIX_DATA, &last_update, temp_matrix, split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
  107. if (okay) {
  108. // Checksum matches the received data, save as the last matrix state
  109. memcpy(last_matrix, temp_matrix, sizeof(temp_matrix));
  110. }
  111. // Copy out the last-known-good matrix state to the slave matrix
  112. memcpy(slave_matrix, last_matrix, sizeof(last_matrix));
  113. return okay;
  114. }
  115. static void slave_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  116. memcpy(split_shmem->smatrix.matrix, slave_matrix, sizeof(split_shmem->smatrix.matrix));
  117. split_shmem->smatrix.checksum = crc8(split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
  118. }
  119. // clang-format off
  120. #define TRANSACTIONS_SLAVE_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(slave_matrix_handlers)
  121. #define TRANSACTIONS_SLAVE_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(slave_matrix_handlers)
  122. #define TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS \
  123. [GET_SLAVE_MATRIX_CHECKSUM] = trans_target2initiator_initializer(smatrix.checksum), \
  124. [GET_SLAVE_MATRIX_DATA] = trans_target2initiator_initializer(smatrix.matrix),
  125. // clang-format on
  126. ////////////////////////////////////////////////////
  127. // Master matrix
  128. #ifdef SPLIT_TRANSPORT_MIRROR
  129. static bool master_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  130. static uint32_t last_update = 0;
  131. return send_if_data_mismatch(PUT_MASTER_MATRIX, &last_update, master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
  132. }
  133. static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  134. // Always copy to the master matrix
  135. memcpy(master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
  136. }
  137. # define TRANSACTIONS_MASTER_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(master_matrix_handlers)
  138. # define TRANSACTIONS_MASTER_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(master_matrix_handlers)
  139. # define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS [PUT_MASTER_MATRIX] = trans_initiator2target_initializer(mmatrix.matrix),
  140. #else // SPLIT_TRANSPORT_MIRROR
  141. # define TRANSACTIONS_MASTER_MATRIX_MASTER()
  142. # define TRANSACTIONS_MASTER_MATRIX_SLAVE()
  143. # define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
  144. #endif // SPLIT_TRANSPORT_MIRROR
  145. ////////////////////////////////////////////////////
  146. // Encoders
  147. #ifdef ENCODER_ENABLE
  148. static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  149. static uint32_t last_update = 0;
  150. uint8_t temp_state[NUMBER_OF_ENCODERS];
  151. bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
  152. if (okay) encoder_update_raw(temp_state);
  153. return okay;
  154. }
  155. static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  156. uint8_t encoder_state[NUMBER_OF_ENCODERS];
  157. encoder_state_raw(encoder_state);
  158. // Always prepare the encoder state for read.
  159. memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
  160. // Now update the checksum given that the encoders has been written to
  161. split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
  162. }
  163. // clang-format off
  164. # define TRANSACTIONS_ENCODERS_MASTER() TRANSACTION_HANDLER_MASTER(encoder_handlers)
  165. # define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE(encoder_handlers)
  166. # define TRANSACTIONS_ENCODERS_REGISTRATIONS \
  167. [GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
  168. [GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.state),
  169. // clang-format on
  170. #else // ENCODER_ENABLE
  171. # define TRANSACTIONS_ENCODERS_MASTER()
  172. # define TRANSACTIONS_ENCODERS_SLAVE()
  173. # define TRANSACTIONS_ENCODERS_REGISTRATIONS
  174. #endif // ENCODER_ENABLE
  175. ////////////////////////////////////////////////////
  176. // Sync timer
  177. #ifndef DISABLE_SYNC_TIMER
  178. static bool sync_timer_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  179. static uint32_t last_update = 0;
  180. bool okay = true;
  181. if (timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS) {
  182. uint32_t sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
  183. okay &= transport_write(PUT_SYNC_TIMER, &sync_timer, sizeof(sync_timer));
  184. if (okay) {
  185. last_update = timer_read32();
  186. }
  187. }
  188. return okay;
  189. }
  190. static void sync_timer_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  191. static uint32_t last_sync_timer = 0;
  192. if (last_sync_timer != split_shmem->sync_timer) {
  193. last_sync_timer = split_shmem->sync_timer;
  194. sync_timer_update(last_sync_timer);
  195. }
  196. }
  197. # define TRANSACTIONS_SYNC_TIMER_MASTER() TRANSACTION_HANDLER_MASTER(sync_timer_handlers)
  198. # define TRANSACTIONS_SYNC_TIMER_SLAVE() TRANSACTION_HANDLER_SLAVE(sync_timer_handlers)
  199. # define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS [PUT_SYNC_TIMER] = trans_initiator2target_initializer(sync_timer),
  200. #else // DISABLE_SYNC_TIMER
  201. # define TRANSACTIONS_SYNC_TIMER_MASTER()
  202. # define TRANSACTIONS_SYNC_TIMER_SLAVE()
  203. # define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
  204. #endif // DISABLE_SYNC_TIMER
  205. ////////////////////////////////////////////////////
  206. // Layer state
  207. #if !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
  208. static bool layer_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  209. static uint32_t last_layer_state_update = 0;
  210. static uint32_t last_default_layer_state_update = 0;
  211. bool okay = send_if_condition(PUT_LAYER_STATE, &last_layer_state_update, (layer_state != split_shmem->layers.layer_state), &layer_state, sizeof(layer_state));
  212. if (okay) {
  213. okay &= send_if_condition(PUT_DEFAULT_LAYER_STATE, &last_default_layer_state_update, (default_layer_state != split_shmem->layers.default_layer_state), &default_layer_state, sizeof(default_layer_state));
  214. }
  215. return okay;
  216. }
  217. static void layer_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  218. layer_state = split_shmem->layers.layer_state;
  219. default_layer_state = split_shmem->layers.default_layer_state;
  220. }
  221. // clang-format off
  222. # define TRANSACTIONS_LAYER_STATE_MASTER() TRANSACTION_HANDLER_MASTER(layer_state_handlers)
  223. # define TRANSACTIONS_LAYER_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE(layer_state_handlers)
  224. # define TRANSACTIONS_LAYER_STATE_REGISTRATIONS \
  225. [PUT_LAYER_STATE] = trans_initiator2target_initializer(layers.layer_state), \
  226. [PUT_DEFAULT_LAYER_STATE] = trans_initiator2target_initializer(layers.default_layer_state),
  227. // clang-format on
  228. #else // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
  229. # define TRANSACTIONS_LAYER_STATE_MASTER()
  230. # define TRANSACTIONS_LAYER_STATE_SLAVE()
  231. # define TRANSACTIONS_LAYER_STATE_REGISTRATIONS
  232. #endif // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
  233. ////////////////////////////////////////////////////
  234. // LED state
  235. #ifdef SPLIT_LED_STATE_ENABLE
  236. static bool led_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  237. static uint32_t last_update = 0;
  238. uint8_t led_state = host_keyboard_leds();
  239. return send_if_data_mismatch(PUT_LED_STATE, &last_update, &led_state, &split_shmem->led_state, sizeof(led_state));
  240. }
  241. static void led_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  242. void set_split_host_keyboard_leds(uint8_t led_state);
  243. set_split_host_keyboard_leds(split_shmem->led_state);
  244. }
  245. # define TRANSACTIONS_LED_STATE_MASTER() TRANSACTION_HANDLER_MASTER(led_state_handlers)
  246. # define TRANSACTIONS_LED_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE(led_state_handlers)
  247. # define TRANSACTIONS_LED_STATE_REGISTRATIONS [PUT_LED_STATE] = trans_initiator2target_initializer(led_state),
  248. #else // SPLIT_LED_STATE_ENABLE
  249. # define TRANSACTIONS_LED_STATE_MASTER()
  250. # define TRANSACTIONS_LED_STATE_SLAVE()
  251. # define TRANSACTIONS_LED_STATE_REGISTRATIONS
  252. #endif // SPLIT_LED_STATE_ENABLE
  253. ////////////////////////////////////////////////////
  254. // Mods
  255. #ifdef SPLIT_MODS_ENABLE
  256. static bool mods_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  257. static uint32_t last_update = 0;
  258. bool mods_need_sync = timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS;
  259. split_mods_sync_t new_mods;
  260. new_mods.real_mods = get_mods();
  261. if (!mods_need_sync && new_mods.real_mods != split_shmem->mods.real_mods) {
  262. mods_need_sync = true;
  263. }
  264. new_mods.weak_mods = get_weak_mods();
  265. if (!mods_need_sync && new_mods.weak_mods != split_shmem->mods.weak_mods) {
  266. mods_need_sync = true;
  267. }
  268. # ifndef NO_ACTION_ONESHOT
  269. new_mods.oneshot_mods = get_oneshot_mods();
  270. if (!mods_need_sync && new_mods.oneshot_mods != split_shmem->mods.oneshot_mods) {
  271. mods_need_sync = true;
  272. }
  273. # endif // NO_ACTION_ONESHOT
  274. bool okay = true;
  275. if (mods_need_sync) {
  276. okay &= transport_write(PUT_MODS, &new_mods, sizeof(new_mods));
  277. if (okay) {
  278. last_update = timer_read32();
  279. }
  280. }
  281. return okay;
  282. }
  283. static void mods_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  284. set_mods(split_shmem->mods.real_mods);
  285. set_weak_mods(split_shmem->mods.weak_mods);
  286. # ifndef NO_ACTION_ONESHOT
  287. set_oneshot_mods(split_shmem->mods.oneshot_mods);
  288. # endif
  289. }
  290. # define TRANSACTIONS_MODS_MASTER() TRANSACTION_HANDLER_MASTER(mods_handlers)
  291. # define TRANSACTIONS_MODS_SLAVE() TRANSACTION_HANDLER_SLAVE(mods_handlers)
  292. # define TRANSACTIONS_MODS_REGISTRATIONS [PUT_MODS] = trans_initiator2target_initializer(mods),
  293. #else // SPLIT_MODS_ENABLE
  294. # define TRANSACTIONS_MODS_MASTER()
  295. # define TRANSACTIONS_MODS_SLAVE()
  296. # define TRANSACTIONS_MODS_REGISTRATIONS
  297. #endif // SPLIT_MODS_ENABLE
  298. ////////////////////////////////////////////////////
  299. // Backlight
  300. #ifdef BACKLIGHT_ENABLE
  301. static bool backlight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  302. static uint32_t last_update = 0;
  303. uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0;
  304. return send_if_condition(PUT_BACKLIGHT, &last_update, (level != split_shmem->backlight_level), &level, sizeof(level));
  305. }
  306. static void backlight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { backlight_set(split_shmem->backlight_level); }
  307. # define TRANSACTIONS_BACKLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(backlight_handlers)
  308. # define TRANSACTIONS_BACKLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(backlight_handlers)
  309. # define TRANSACTIONS_BACKLIGHT_REGISTRATIONS [PUT_BACKLIGHT] = trans_initiator2target_initializer(backlight_level),
  310. #else // BACKLIGHT_ENABLE
  311. # define TRANSACTIONS_BACKLIGHT_MASTER()
  312. # define TRANSACTIONS_BACKLIGHT_SLAVE()
  313. # define TRANSACTIONS_BACKLIGHT_REGISTRATIONS
  314. #endif // BACKLIGHT_ENABLE
  315. ////////////////////////////////////////////////////
  316. // RGBLIGHT
  317. #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  318. static bool rgblight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  319. static uint32_t last_update = 0;
  320. rgblight_syncinfo_t rgblight_sync;
  321. rgblight_get_syncinfo(&rgblight_sync);
  322. if (send_if_condition(PUT_RGBLIGHT, &last_update, (rgblight_sync.status.change_flags != 0), &rgblight_sync, sizeof(rgblight_sync))) {
  323. rgblight_clear_change_flags();
  324. } else {
  325. return false;
  326. }
  327. return true;
  328. }
  329. static void rgblight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  330. // Update the RGB with the new data
  331. if (split_shmem->rgblight_sync.status.change_flags != 0) {
  332. rgblight_update_sync(&split_shmem->rgblight_sync, false);
  333. split_shmem->rgblight_sync.status.change_flags = 0;
  334. }
  335. }
  336. # define TRANSACTIONS_RGBLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(rgblight_handlers)
  337. # define TRANSACTIONS_RGBLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(rgblight_handlers)
  338. # define TRANSACTIONS_RGBLIGHT_REGISTRATIONS [PUT_RGBLIGHT] = trans_initiator2target_initializer(rgblight_sync),
  339. #else // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  340. # define TRANSACTIONS_RGBLIGHT_MASTER()
  341. # define TRANSACTIONS_RGBLIGHT_SLAVE()
  342. # define TRANSACTIONS_RGBLIGHT_REGISTRATIONS
  343. #endif // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  344. ////////////////////////////////////////////////////
  345. // LED Matrix
  346. #if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
  347. static bool led_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  348. static uint32_t last_update = 0;
  349. led_matrix_sync_t led_matrix_sync;
  350. memcpy(&led_matrix_sync.led_matrix, &led_matrix_eeconfig, sizeof(led_eeconfig_t));
  351. led_matrix_sync.led_suspend_state = led_matrix_get_suspend_state();
  352. return send_if_data_mismatch(PUT_LED_MATRIX, &last_update, &led_matrix_sync, &split_shmem->led_matrix_sync, sizeof(led_matrix_sync));
  353. }
  354. static void led_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  355. memcpy(&led_matrix_eeconfig, &split_shmem->led_matrix_sync.led_matrix, sizeof(led_eeconfig_t));
  356. led_matrix_set_suspend_state(split_shmem->led_matrix_sync.led_suspend_state);
  357. }
  358. # define TRANSACTIONS_LED_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(led_matrix_handlers)
  359. # define TRANSACTIONS_LED_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(led_matrix_handlers)
  360. # define TRANSACTIONS_LED_MATRIX_REGISTRATIONS [PUT_LED_MATRIX] = trans_initiator2target_initializer(led_matrix_sync),
  361. #else // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
  362. # define TRANSACTIONS_LED_MATRIX_MASTER()
  363. # define TRANSACTIONS_LED_MATRIX_SLAVE()
  364. # define TRANSACTIONS_LED_MATRIX_REGISTRATIONS
  365. #endif // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
  366. ////////////////////////////////////////////////////
  367. // RGB Matrix
  368. #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
  369. static bool rgb_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  370. static uint32_t last_update = 0;
  371. rgb_matrix_sync_t rgb_matrix_sync;
  372. memcpy(&rgb_matrix_sync.rgb_matrix, &rgb_matrix_config, sizeof(rgb_config_t));
  373. rgb_matrix_sync.rgb_suspend_state = rgb_matrix_get_suspend_state();
  374. return send_if_data_mismatch(PUT_RGB_MATRIX, &last_update, &rgb_matrix_sync, &split_shmem->rgb_matrix_sync, sizeof(rgb_matrix_sync));
  375. }
  376. static void rgb_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  377. memcpy(&rgb_matrix_config, &split_shmem->rgb_matrix_sync.rgb_matrix, sizeof(rgb_config_t));
  378. rgb_matrix_set_suspend_state(split_shmem->rgb_matrix_sync.rgb_suspend_state);
  379. }
  380. # define TRANSACTIONS_RGB_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(rgb_matrix_handlers)
  381. # define TRANSACTIONS_RGB_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(rgb_matrix_handlers)
  382. # define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS [PUT_RGB_MATRIX] = trans_initiator2target_initializer(rgb_matrix_sync),
  383. #else // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
  384. # define TRANSACTIONS_RGB_MATRIX_MASTER()
  385. # define TRANSACTIONS_RGB_MATRIX_SLAVE()
  386. # define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
  387. #endif // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
  388. ////////////////////////////////////////////////////
  389. // WPM
  390. #if defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
  391. static bool wpm_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  392. static uint32_t last_update = 0;
  393. uint8_t current_wpm = get_current_wpm();
  394. return send_if_condition(PUT_WPM, &last_update, (current_wpm != split_shmem->current_wpm), &current_wpm, sizeof(current_wpm));
  395. }
  396. static void wpm_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { set_current_wpm(split_shmem->current_wpm); }
  397. # define TRANSACTIONS_WPM_MASTER() TRANSACTION_HANDLER_MASTER(wpm_handlers)
  398. # define TRANSACTIONS_WPM_SLAVE() TRANSACTION_HANDLER_SLAVE(wpm_handlers)
  399. # define TRANSACTIONS_WPM_REGISTRATIONS [PUT_WPM] = trans_initiator2target_initializer(current_wpm),
  400. #else // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
  401. # define TRANSACTIONS_WPM_MASTER()
  402. # define TRANSACTIONS_WPM_SLAVE()
  403. # define TRANSACTIONS_WPM_REGISTRATIONS
  404. #endif // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
  405. ////////////////////////////////////////////////////
  406. // OLED
  407. #if defined(OLED_DRIVER_ENABLE) && defined(SPLIT_OLED_ENABLE)
  408. static bool oled_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  409. static uint32_t last_update = 0;
  410. bool current_oled_state = is_oled_on();
  411. return send_if_condition(PUT_OLED, &last_update, (current_oled_state != split_shmem->current_oled_state), &current_oled_state, sizeof(current_oled_state));
  412. }
  413. static void oled_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  414. if (split_shmem->current_oled_state) {
  415. oled_on();
  416. } else {
  417. oled_off();
  418. }
  419. }
  420. # define TRANSACTIONS_OLED_MASTER() TRANSACTION_HANDLER_MASTER(oled_handlers)
  421. # define TRANSACTIONS_OLED_SLAVE() TRANSACTION_HANDLER_SLAVE(oled_handlers)
  422. # define TRANSACTIONS_OLED_REGISTRATIONS [PUT_OLED] = trans_initiator2target_initializer(current_oled_state),
  423. #else // defined(OLED_DRIVER_ENABLE) && defined(SPLIT_OLED_ENABLE)
  424. # define TRANSACTIONS_OLED_MASTER()
  425. # define TRANSACTIONS_OLED_SLAVE()
  426. # define TRANSACTIONS_OLED_REGISTRATIONS
  427. #endif // defined(OLED_ENABLE) && defined(SPLIT_OLED_ENABLE)
  428. ////////////////////////////////////////////////////
  429. // ST7565
  430. #if defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
  431. static bool st7565_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  432. static uint32_t last_update = 0;
  433. bool current_st7565_state = st7565_is_on();
  434. return send_if_condition(PUT_ST7565, &last_update, (current_st7565_state != split_shmem->current_st7565_state), &current_st7565_state, sizeof(current_st7565_state));
  435. }
  436. static void st7565_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  437. if (split_shmem->current_st7565_state) {
  438. st7565_on();
  439. } else {
  440. st7565_off();
  441. }
  442. }
  443. # define TRANSACTIONS_ST7565_MASTER() TRANSACTION_HANDLER_MASTER(st7565_handlers)
  444. # define TRANSACTIONS_ST7565_SLAVE() TRANSACTION_HANDLER_SLAVE(st7565_handlers)
  445. # define TRANSACTIONS_ST7565_REGISTRATIONS [PUT_ST7565] = trans_initiator2target_initializer(current_st7565_state),
  446. #else // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
  447. # define TRANSACTIONS_ST7565_MASTER()
  448. # define TRANSACTIONS_ST7565_SLAVE()
  449. # define TRANSACTIONS_ST7565_REGISTRATIONS
  450. #endif // defined(ST7565_ENABLE) && defined(SPLIT_ST7565_ENABLE)
  451. ////////////////////////////////////////////////////
  452. uint8_t dummy;
  453. split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = {
  454. // Set defaults
  455. [0 ...(NUM_TOTAL_TRANSACTIONS - 1)] = {NULL, 0, 0, 0, 0, 0},
  456. #ifdef USE_I2C
  457. [I2C_EXECUTE_CALLBACK] = trans_initiator2target_initializer(transaction_id),
  458. #endif // USE_I2C
  459. // clang-format off
  460. TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS
  461. TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
  462. TRANSACTIONS_ENCODERS_REGISTRATIONS
  463. TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
  464. TRANSACTIONS_LAYER_STATE_REGISTRATIONS
  465. TRANSACTIONS_LED_STATE_REGISTRATIONS
  466. TRANSACTIONS_MODS_REGISTRATIONS
  467. TRANSACTIONS_BACKLIGHT_REGISTRATIONS
  468. TRANSACTIONS_RGBLIGHT_REGISTRATIONS
  469. TRANSACTIONS_LED_MATRIX_REGISTRATIONS
  470. TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
  471. TRANSACTIONS_WPM_REGISTRATIONS
  472. TRANSACTIONS_OLED_REGISTRATIONS
  473. TRANSACTIONS_ST7565_REGISTRATIONS
  474. // clang-format on
  475. #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
  476. [PUT_RPC_INFO] = trans_initiator2target_initializer_cb(rpc_info, slave_rpc_info_callback),
  477. [PUT_RPC_REQ_DATA] = trans_initiator2target_initializer(rpc_m2s_buffer),
  478. [EXECUTE_RPC] = trans_initiator2target_initializer_cb(rpc_info.transaction_id, slave_rpc_exec_callback),
  479. [GET_RPC_RESP_DATA] = trans_target2initiator_initializer(rpc_s2m_buffer),
  480. #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
  481. };
  482. bool transactions_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  483. bool okay = true;
  484. TRANSACTIONS_SLAVE_MATRIX_MASTER();
  485. TRANSACTIONS_MASTER_MATRIX_MASTER();
  486. TRANSACTIONS_ENCODERS_MASTER();
  487. TRANSACTIONS_SYNC_TIMER_MASTER();
  488. TRANSACTIONS_LAYER_STATE_MASTER();
  489. TRANSACTIONS_LED_STATE_MASTER();
  490. TRANSACTIONS_MODS_MASTER();
  491. TRANSACTIONS_BACKLIGHT_MASTER();
  492. TRANSACTIONS_RGBLIGHT_MASTER();
  493. TRANSACTIONS_LED_MATRIX_MASTER();
  494. TRANSACTIONS_RGB_MATRIX_MASTER();
  495. TRANSACTIONS_WPM_MASTER();
  496. TRANSACTIONS_OLED_MASTER();
  497. TRANSACTIONS_ST7565_MASTER();
  498. return okay;
  499. }
  500. void transactions_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
  501. TRANSACTIONS_SLAVE_MATRIX_SLAVE();
  502. TRANSACTIONS_MASTER_MATRIX_SLAVE();
  503. TRANSACTIONS_ENCODERS_SLAVE();
  504. TRANSACTIONS_SYNC_TIMER_SLAVE();
  505. TRANSACTIONS_LAYER_STATE_SLAVE();
  506. TRANSACTIONS_LED_STATE_SLAVE();
  507. TRANSACTIONS_MODS_SLAVE();
  508. TRANSACTIONS_BACKLIGHT_SLAVE();
  509. TRANSACTIONS_RGBLIGHT_SLAVE();
  510. TRANSACTIONS_LED_MATRIX_SLAVE();
  511. TRANSACTIONS_RGB_MATRIX_SLAVE();
  512. TRANSACTIONS_WPM_SLAVE();
  513. TRANSACTIONS_OLED_SLAVE();
  514. TRANSACTIONS_ST7565_SLAVE();
  515. }
  516. #if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
  517. void transaction_register_rpc(int8_t transaction_id, slave_callback_t callback) {
  518. // Prevent invoking RPC on QMK core sync data
  519. if (transaction_id <= GET_RPC_RESP_DATA) return;
  520. // Set the callback
  521. split_transaction_table[transaction_id].slave_callback = callback;
  522. split_transaction_table[transaction_id].initiator2target_offset = offsetof(split_shared_memory_t, rpc_m2s_buffer);
  523. split_transaction_table[transaction_id].target2initiator_offset = offsetof(split_shared_memory_t, rpc_s2m_buffer);
  524. }
  525. bool transaction_rpc_exec(int8_t transaction_id, uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
  526. // Prevent invoking RPC on QMK core sync data
  527. if (transaction_id <= GET_RPC_RESP_DATA) return false;
  528. // Prevent sizing issues
  529. if (initiator2target_buffer_size > RPC_M2S_BUFFER_SIZE) return false;
  530. if (target2initiator_buffer_size > RPC_S2M_BUFFER_SIZE) return false;
  531. // Prepare the metadata block
  532. rpc_sync_info_t info = {.transaction_id = transaction_id, .m2s_length = initiator2target_buffer_size, .s2m_length = target2initiator_buffer_size};
  533. // Make sure the local side knows that we're not sending the full block of data
  534. split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = initiator2target_buffer_size;
  535. split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = target2initiator_buffer_size;
  536. // Run through the sequence:
  537. // * set the transaction ID and lengths
  538. // * send the request data
  539. // * execute RPC callback
  540. // * retrieve the response data
  541. if (!transport_write(PUT_RPC_INFO, &info, sizeof(info))) {
  542. return false;
  543. }
  544. if (!transport_write(PUT_RPC_REQ_DATA, initiator2target_buffer, initiator2target_buffer_size)) {
  545. return false;
  546. }
  547. if (!transport_write(EXECUTE_RPC, &transaction_id, sizeof(transaction_id))) {
  548. return false;
  549. }
  550. if (!transport_read(GET_RPC_RESP_DATA, target2initiator_buffer, target2initiator_buffer_size)) {
  551. return false;
  552. }
  553. return true;
  554. }
  555. void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
  556. // The RPC info block contains the intended transaction ID, as well as the sizes for both inbound and outbound data.
  557. // Ignore the args -- the `split_shmem` already has the info, we just need to act upon it.
  558. // We must keep the `split_transaction_table` non-const, so that it is able to be modified at runtime.
  559. split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = split_shmem->rpc_info.m2s_length;
  560. split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = split_shmem->rpc_info.s2m_length;
  561. }
  562. void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
  563. // We can assume that the buffer lengths are correctly set, now, given that sequentially the rpc_info callback was already executed.
  564. // Go through the rpc_info and execute _that_ transaction's callback, with the scratch buffers as inputs.
  565. int8_t transaction_id = split_shmem->rpc_info.transaction_id;
  566. if (transaction_id < NUM_TOTAL_TRANSACTIONS) {
  567. split_transaction_desc_t *trans = &split_transaction_table[transaction_id];
  568. if (trans->slave_callback) {
  569. trans->slave_callback(split_shmem->rpc_info.m2s_length, split_shmem->rpc_m2s_buffer, split_shmem->rpc_info.s2m_length, split_shmem->rpc_s2m_buffer);
  570. }
  571. }
  572. }
  573. #endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)