quantum.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /* Copyright 2016-2017 Jack Humbert
  2. *
  3. * This program is free software: you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation, either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "quantum.h"
  17. #ifdef PROTOCOL_LUFA
  18. #include "outputselect.h"
  19. #endif
  20. #ifndef TAPPING_TERM
  21. #define TAPPING_TERM 200
  22. #endif
  23. #ifndef BREATHING_PERIOD
  24. #define BREATHING_PERIOD 6
  25. #endif
  26. #include "backlight.h"
  27. extern backlight_config_t backlight_config;
  28. #ifdef FAUXCLICKY_ENABLE
  29. #include "fauxclicky.h"
  30. #endif
  31. #ifdef API_ENABLE
  32. #include "api.h"
  33. #endif
  34. #ifdef MIDI_ENABLE
  35. #include "process_midi.h"
  36. #endif
  37. #ifdef AUDIO_ENABLE
  38. #ifndef GOODBYE_SONG
  39. #define GOODBYE_SONG SONG(GOODBYE_SOUND)
  40. #endif
  41. #ifndef AG_NORM_SONG
  42. #define AG_NORM_SONG SONG(AG_NORM_SOUND)
  43. #endif
  44. #ifndef AG_SWAP_SONG
  45. #define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
  46. #endif
  47. float goodbye_song[][2] = GOODBYE_SONG;
  48. float ag_norm_song[][2] = AG_NORM_SONG;
  49. float ag_swap_song[][2] = AG_SWAP_SONG;
  50. #ifdef DEFAULT_LAYER_SONGS
  51. float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
  52. #endif
  53. #endif
  54. static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
  55. switch (code) {
  56. case QK_MODS ... QK_MODS_MAX:
  57. break;
  58. default:
  59. return;
  60. }
  61. if (code & QK_LCTL)
  62. f(KC_LCTL);
  63. if (code & QK_LSFT)
  64. f(KC_LSFT);
  65. if (code & QK_LALT)
  66. f(KC_LALT);
  67. if (code & QK_LGUI)
  68. f(KC_LGUI);
  69. if (code < QK_RMODS_MIN) return;
  70. if (code & QK_RCTL)
  71. f(KC_RCTL);
  72. if (code & QK_RSFT)
  73. f(KC_RSFT);
  74. if (code & QK_RALT)
  75. f(KC_RALT);
  76. if (code & QK_RGUI)
  77. f(KC_RGUI);
  78. }
  79. static inline void qk_register_weak_mods(uint8_t kc) {
  80. add_weak_mods(MOD_BIT(kc));
  81. send_keyboard_report();
  82. }
  83. static inline void qk_unregister_weak_mods(uint8_t kc) {
  84. del_weak_mods(MOD_BIT(kc));
  85. send_keyboard_report();
  86. }
  87. static inline void qk_register_mods(uint8_t kc) {
  88. add_weak_mods(MOD_BIT(kc));
  89. send_keyboard_report();
  90. }
  91. static inline void qk_unregister_mods(uint8_t kc) {
  92. del_weak_mods(MOD_BIT(kc));
  93. send_keyboard_report();
  94. }
  95. void register_code16 (uint16_t code) {
  96. if (IS_MOD(code) || code == KC_NO) {
  97. do_code16 (code, qk_register_mods);
  98. } else {
  99. do_code16 (code, qk_register_weak_mods);
  100. }
  101. register_code (code);
  102. }
  103. void unregister_code16 (uint16_t code) {
  104. unregister_code (code);
  105. if (IS_MOD(code) || code == KC_NO) {
  106. do_code16 (code, qk_unregister_mods);
  107. } else {
  108. do_code16 (code, qk_unregister_weak_mods);
  109. }
  110. }
  111. __attribute__ ((weak))
  112. bool process_action_kb(keyrecord_t *record) {
  113. return true;
  114. }
  115. __attribute__ ((weak))
  116. bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  117. return process_record_user(keycode, record);
  118. }
  119. __attribute__ ((weak))
  120. bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  121. return true;
  122. }
  123. void reset_keyboard(void) {
  124. clear_keyboard();
  125. #if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
  126. process_midi_all_notes_off();
  127. #endif
  128. #ifdef AUDIO_ENABLE
  129. #ifndef NO_MUSIC_MODE
  130. music_all_notes_off();
  131. #endif
  132. uint16_t timer_start = timer_read();
  133. PLAY_SONG(goodbye_song);
  134. shutdown_user();
  135. while(timer_elapsed(timer_start) < 250)
  136. wait_ms(1);
  137. stop_all_notes();
  138. #else
  139. shutdown_user();
  140. wait_ms(250);
  141. #endif
  142. // this is also done later in bootloader.c - not sure if it's neccesary here
  143. #ifdef BOOTLOADER_CATERINA
  144. *(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
  145. #endif
  146. bootloader_jump();
  147. }
  148. // Shift / paren setup
  149. #ifndef LSPO_KEY
  150. #define LSPO_KEY KC_9
  151. #endif
  152. #ifndef RSPC_KEY
  153. #define RSPC_KEY KC_0
  154. #endif
  155. // Shift / Enter setup
  156. #ifndef SFTENT_KEY
  157. #define SFTENT_KEY KC_ENT
  158. #endif
  159. static bool shift_interrupted[2] = {0, 0};
  160. static uint16_t scs_timer[2] = {0, 0};
  161. /* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
  162. * Used to ensure that the correct keycode is released if the key is released.
  163. */
  164. static bool grave_esc_was_shifted = false;
  165. bool process_record_quantum(keyrecord_t *record) {
  166. /* This gets the keycode from the key pressed */
  167. keypos_t key = record->event.key;
  168. uint16_t keycode;
  169. #if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
  170. /* TODO: Use store_or_get_action() or a similar function. */
  171. if (!disable_action_cache) {
  172. uint8_t layer;
  173. if (record->event.pressed) {
  174. layer = layer_switch_get_layer(key);
  175. update_source_layers_cache(key, layer);
  176. } else {
  177. layer = read_source_layers_cache(key);
  178. }
  179. keycode = keymap_key_to_keycode(layer, key);
  180. } else
  181. #endif
  182. keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
  183. // This is how you use actions here
  184. // if (keycode == KC_LEAD) {
  185. // action_t action;
  186. // action.code = ACTION_DEFAULT_LAYER_SET(0);
  187. // process_action(record, action);
  188. // return false;
  189. // }
  190. #ifdef TAP_DANCE_ENABLE
  191. preprocess_tap_dance(keycode, record);
  192. #endif
  193. if (!(
  194. #if defined(KEY_LOCK_ENABLE)
  195. // Must run first to be able to mask key_up events.
  196. process_key_lock(&keycode, record) &&
  197. #endif
  198. #if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
  199. process_clicky(keycode, record) &&
  200. #endif //AUDIO_CLICKY
  201. process_record_kb(keycode, record) &&
  202. #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
  203. process_rgb_matrix(keycode, record) &&
  204. #endif
  205. #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
  206. process_midi(keycode, record) &&
  207. #endif
  208. #ifdef AUDIO_ENABLE
  209. process_audio(keycode, record) &&
  210. #endif
  211. #ifdef STENO_ENABLE
  212. process_steno(keycode, record) &&
  213. #endif
  214. #if ( defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
  215. process_music(keycode, record) &&
  216. #endif
  217. #ifdef TAP_DANCE_ENABLE
  218. process_tap_dance(keycode, record) &&
  219. #endif
  220. #ifdef LEADER_ENABLE
  221. process_leader(keycode, record) &&
  222. #endif
  223. #ifdef COMBO_ENABLE
  224. process_combo(keycode, record) &&
  225. #endif
  226. #ifdef UNICODE_ENABLE
  227. process_unicode(keycode, record) &&
  228. #endif
  229. #ifdef UCIS_ENABLE
  230. process_ucis(keycode, record) &&
  231. #endif
  232. #ifdef PRINTING_ENABLE
  233. process_printer(keycode, record) &&
  234. #endif
  235. #ifdef AUTO_SHIFT_ENABLE
  236. process_auto_shift(keycode, record) &&
  237. #endif
  238. #ifdef UNICODEMAP_ENABLE
  239. process_unicode_map(keycode, record) &&
  240. #endif
  241. #ifdef TERMINAL_ENABLE
  242. process_terminal(keycode, record) &&
  243. #endif
  244. true)) {
  245. return false;
  246. }
  247. // Shift / paren setup
  248. switch(keycode) {
  249. case RESET:
  250. if (record->event.pressed) {
  251. reset_keyboard();
  252. }
  253. return false;
  254. case DEBUG:
  255. if (record->event.pressed) {
  256. debug_enable = true;
  257. print("DEBUG: enabled.\n");
  258. }
  259. return false;
  260. #ifdef FAUXCLICKY_ENABLE
  261. case FC_TOG:
  262. if (record->event.pressed) {
  263. FAUXCLICKY_TOGGLE;
  264. }
  265. return false;
  266. case FC_ON:
  267. if (record->event.pressed) {
  268. FAUXCLICKY_ON;
  269. }
  270. return false;
  271. case FC_OFF:
  272. if (record->event.pressed) {
  273. FAUXCLICKY_OFF;
  274. }
  275. return false;
  276. #endif
  277. #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  278. case RGB_TOG:
  279. // Split keyboards need to trigger on key-up for edge-case issue
  280. #ifndef SPLIT_KEYBOARD
  281. if (record->event.pressed) {
  282. #else
  283. if (!record->event.pressed) {
  284. #endif
  285. rgblight_toggle();
  286. #ifdef SPLIT_KEYBOARD
  287. RGB_DIRTY = true;
  288. #endif
  289. }
  290. return false;
  291. case RGB_MODE_FORWARD:
  292. if (record->event.pressed) {
  293. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  294. if(shifted) {
  295. rgblight_step_reverse();
  296. }
  297. else {
  298. rgblight_step();
  299. }
  300. #ifdef SPLIT_KEYBOARD
  301. RGB_DIRTY = true;
  302. #endif
  303. }
  304. return false;
  305. case RGB_MODE_REVERSE:
  306. if (record->event.pressed) {
  307. uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
  308. if(shifted) {
  309. rgblight_step();
  310. }
  311. else {
  312. rgblight_step_reverse();
  313. }
  314. #ifdef SPLIT_KEYBOARD
  315. RGB_DIRTY = true;
  316. #endif
  317. }
  318. return false;
  319. case RGB_HUI:
  320. // Split keyboards need to trigger on key-up for edge-case issue
  321. #ifndef SPLIT_KEYBOARD
  322. if (record->event.pressed) {
  323. #else
  324. if (!record->event.pressed) {
  325. #endif
  326. rgblight_increase_hue();
  327. #ifdef SPLIT_KEYBOARD
  328. RGB_DIRTY = true;
  329. #endif
  330. }
  331. return false;
  332. case RGB_HUD:
  333. // Split keyboards need to trigger on key-up for edge-case issue
  334. #ifndef SPLIT_KEYBOARD
  335. if (record->event.pressed) {
  336. #else
  337. if (!record->event.pressed) {
  338. #endif
  339. rgblight_decrease_hue();
  340. #ifdef SPLIT_KEYBOARD
  341. RGB_DIRTY = true;
  342. #endif
  343. }
  344. return false;
  345. case RGB_SAI:
  346. // Split keyboards need to trigger on key-up for edge-case issue
  347. #ifndef SPLIT_KEYBOARD
  348. if (record->event.pressed) {
  349. #else
  350. if (!record->event.pressed) {
  351. #endif
  352. rgblight_increase_sat();
  353. #ifdef SPLIT_KEYBOARD
  354. RGB_DIRTY = true;
  355. #endif
  356. }
  357. return false;
  358. case RGB_SAD:
  359. // Split keyboards need to trigger on key-up for edge-case issue
  360. #ifndef SPLIT_KEYBOARD
  361. if (record->event.pressed) {
  362. #else
  363. if (!record->event.pressed) {
  364. #endif
  365. rgblight_decrease_sat();
  366. #ifdef SPLIT_KEYBOARD
  367. RGB_DIRTY = true;
  368. #endif
  369. }
  370. return false;
  371. case RGB_VAI:
  372. // Split keyboards need to trigger on key-up for edge-case issue
  373. #ifndef SPLIT_KEYBOARD
  374. if (record->event.pressed) {
  375. #else
  376. if (!record->event.pressed) {
  377. #endif
  378. rgblight_increase_val();
  379. #ifdef SPLIT_KEYBOARD
  380. RGB_DIRTY = true;
  381. #endif
  382. }
  383. return false;
  384. case RGB_VAD:
  385. // Split keyboards need to trigger on key-up for edge-case issue
  386. #ifndef SPLIT_KEYBOARD
  387. if (record->event.pressed) {
  388. #else
  389. if (!record->event.pressed) {
  390. #endif
  391. rgblight_decrease_val();
  392. #ifdef SPLIT_KEYBOARD
  393. RGB_DIRTY = true;
  394. #endif
  395. }
  396. return false;
  397. case RGB_SPI:
  398. if (record->event.pressed) {
  399. rgblight_increase_speed();
  400. }
  401. return false;
  402. case RGB_SPD:
  403. if (record->event.pressed) {
  404. rgblight_decrease_speed();
  405. }
  406. return false;
  407. case RGB_MODE_PLAIN:
  408. if (record->event.pressed) {
  409. rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
  410. #ifdef SPLIT_KEYBOARD
  411. RGB_DIRTY = true;
  412. #endif
  413. }
  414. return false;
  415. case RGB_MODE_BREATHE:
  416. #ifdef RGBLIGHT_EFFECT_BREATHING
  417. if (record->event.pressed) {
  418. if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
  419. (rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
  420. rgblight_step();
  421. } else {
  422. rgblight_mode(RGBLIGHT_MODE_BREATHING);
  423. }
  424. }
  425. #endif
  426. return false;
  427. case RGB_MODE_RAINBOW:
  428. #ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
  429. if (record->event.pressed) {
  430. if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
  431. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
  432. rgblight_step();
  433. } else {
  434. rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
  435. }
  436. }
  437. #endif
  438. return false;
  439. case RGB_MODE_SWIRL:
  440. #ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
  441. if (record->event.pressed) {
  442. if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
  443. (rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
  444. rgblight_step();
  445. } else {
  446. rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
  447. }
  448. }
  449. #endif
  450. return false;
  451. case RGB_MODE_SNAKE:
  452. #ifdef RGBLIGHT_EFFECT_SNAKE
  453. if (record->event.pressed) {
  454. if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
  455. (rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
  456. rgblight_step();
  457. } else {
  458. rgblight_mode(RGBLIGHT_MODE_SNAKE);
  459. }
  460. }
  461. #endif
  462. return false;
  463. case RGB_MODE_KNIGHT:
  464. #ifdef RGBLIGHT_EFFECT_KNIGHT
  465. if (record->event.pressed) {
  466. if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
  467. (rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
  468. rgblight_step();
  469. } else {
  470. rgblight_mode(RGBLIGHT_MODE_KNIGHT);
  471. }
  472. }
  473. #endif
  474. return false;
  475. case RGB_MODE_XMAS:
  476. #ifdef RGBLIGHT_EFFECT_CHRISTMAS
  477. if (record->event.pressed) {
  478. rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
  479. }
  480. #endif
  481. return false;
  482. case RGB_MODE_GRADIENT:
  483. #ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
  484. if (record->event.pressed) {
  485. if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
  486. (rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
  487. rgblight_step();
  488. } else {
  489. rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
  490. }
  491. }
  492. #endif
  493. return false;
  494. case RGB_MODE_RGBTEST:
  495. #ifdef RGBLIGHT_EFFECT_RGB_TEST
  496. if (record->event.pressed) {
  497. rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
  498. }
  499. #endif
  500. return false;
  501. #endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  502. #ifdef PROTOCOL_LUFA
  503. case OUT_AUTO:
  504. if (record->event.pressed) {
  505. set_output(OUTPUT_AUTO);
  506. }
  507. return false;
  508. case OUT_USB:
  509. if (record->event.pressed) {
  510. set_output(OUTPUT_USB);
  511. }
  512. return false;
  513. #ifdef BLUETOOTH_ENABLE
  514. case OUT_BT:
  515. if (record->event.pressed) {
  516. set_output(OUTPUT_BLUETOOTH);
  517. }
  518. return false;
  519. #endif
  520. #endif
  521. case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
  522. if (record->event.pressed) {
  523. // MAGIC actions (BOOTMAGIC without the boot)
  524. if (!eeconfig_is_enabled()) {
  525. eeconfig_init();
  526. }
  527. /* keymap config */
  528. keymap_config.raw = eeconfig_read_keymap();
  529. switch (keycode)
  530. {
  531. case MAGIC_SWAP_CONTROL_CAPSLOCK:
  532. keymap_config.swap_control_capslock = true;
  533. break;
  534. case MAGIC_CAPSLOCK_TO_CONTROL:
  535. keymap_config.capslock_to_control = true;
  536. break;
  537. case MAGIC_SWAP_LALT_LGUI:
  538. keymap_config.swap_lalt_lgui = true;
  539. break;
  540. case MAGIC_SWAP_RALT_RGUI:
  541. keymap_config.swap_ralt_rgui = true;
  542. break;
  543. case MAGIC_NO_GUI:
  544. keymap_config.no_gui = true;
  545. break;
  546. case MAGIC_SWAP_GRAVE_ESC:
  547. keymap_config.swap_grave_esc = true;
  548. break;
  549. case MAGIC_SWAP_BACKSLASH_BACKSPACE:
  550. keymap_config.swap_backslash_backspace = true;
  551. break;
  552. case MAGIC_HOST_NKRO:
  553. keymap_config.nkro = true;
  554. break;
  555. case MAGIC_SWAP_ALT_GUI:
  556. keymap_config.swap_lalt_lgui = true;
  557. keymap_config.swap_ralt_rgui = true;
  558. #ifdef AUDIO_ENABLE
  559. PLAY_SONG(ag_swap_song);
  560. #endif
  561. break;
  562. case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
  563. keymap_config.swap_control_capslock = false;
  564. break;
  565. case MAGIC_UNCAPSLOCK_TO_CONTROL:
  566. keymap_config.capslock_to_control = false;
  567. break;
  568. case MAGIC_UNSWAP_LALT_LGUI:
  569. keymap_config.swap_lalt_lgui = false;
  570. break;
  571. case MAGIC_UNSWAP_RALT_RGUI:
  572. keymap_config.swap_ralt_rgui = false;
  573. break;
  574. case MAGIC_UNNO_GUI:
  575. keymap_config.no_gui = false;
  576. break;
  577. case MAGIC_UNSWAP_GRAVE_ESC:
  578. keymap_config.swap_grave_esc = false;
  579. break;
  580. case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
  581. keymap_config.swap_backslash_backspace = false;
  582. break;
  583. case MAGIC_UNHOST_NKRO:
  584. keymap_config.nkro = false;
  585. break;
  586. case MAGIC_UNSWAP_ALT_GUI:
  587. keymap_config.swap_lalt_lgui = false;
  588. keymap_config.swap_ralt_rgui = false;
  589. #ifdef AUDIO_ENABLE
  590. PLAY_SONG(ag_norm_song);
  591. #endif
  592. break;
  593. case MAGIC_TOGGLE_ALT_GUI:
  594. keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
  595. keymap_config.swap_ralt_rgui = !keymap_config.swap_ralt_rgui;
  596. #ifdef AUDIO_ENABLE
  597. if (keymap_config.swap_ralt_rgui) {
  598. PLAY_SONG(ag_swap_song);
  599. } else {
  600. PLAY_SONG(ag_norm_song);
  601. }
  602. #endif
  603. break;
  604. case MAGIC_TOGGLE_NKRO:
  605. keymap_config.nkro = !keymap_config.nkro;
  606. break;
  607. default:
  608. break;
  609. }
  610. eeconfig_update_keymap(keymap_config.raw);
  611. clear_keyboard(); // clear to prevent stuck keys
  612. return false;
  613. }
  614. break;
  615. case KC_LSPO: {
  616. if (record->event.pressed) {
  617. shift_interrupted[0] = false;
  618. scs_timer[0] = timer_read ();
  619. register_mods(MOD_BIT(KC_LSFT));
  620. }
  621. else {
  622. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  623. if (get_mods() & MOD_BIT(KC_RSFT)) {
  624. shift_interrupted[0] = true;
  625. shift_interrupted[1] = true;
  626. }
  627. #endif
  628. if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
  629. register_code(LSPO_KEY);
  630. unregister_code(LSPO_KEY);
  631. }
  632. unregister_mods(MOD_BIT(KC_LSFT));
  633. }
  634. return false;
  635. }
  636. case KC_RSPC: {
  637. if (record->event.pressed) {
  638. shift_interrupted[1] = false;
  639. scs_timer[1] = timer_read ();
  640. register_mods(MOD_BIT(KC_RSFT));
  641. }
  642. else {
  643. #ifdef DISABLE_SPACE_CADET_ROLLOVER
  644. if (get_mods() & MOD_BIT(KC_LSFT)) {
  645. shift_interrupted[0] = true;
  646. shift_interrupted[1] = true;
  647. }
  648. #endif
  649. if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  650. register_code(RSPC_KEY);
  651. unregister_code(RSPC_KEY);
  652. }
  653. unregister_mods(MOD_BIT(KC_RSFT));
  654. }
  655. return false;
  656. }
  657. case KC_SFTENT: {
  658. if (record->event.pressed) {
  659. shift_interrupted[1] = false;
  660. scs_timer[1] = timer_read ();
  661. register_mods(MOD_BIT(KC_RSFT));
  662. }
  663. else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
  664. unregister_mods(MOD_BIT(KC_RSFT));
  665. register_code(SFTENT_KEY);
  666. unregister_code(SFTENT_KEY);
  667. }
  668. else {
  669. unregister_mods(MOD_BIT(KC_RSFT));
  670. }
  671. return false;
  672. }
  673. case GRAVE_ESC: {
  674. uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
  675. |MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
  676. #ifdef GRAVE_ESC_ALT_OVERRIDE
  677. // if ALT is pressed, ESC is always sent
  678. // this is handy for the cmd+opt+esc shortcut on macOS, among other things.
  679. if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
  680. shifted = 0;
  681. }
  682. #endif
  683. #ifdef GRAVE_ESC_CTRL_OVERRIDE
  684. // if CTRL is pressed, ESC is always sent
  685. // this is handy for the ctrl+shift+esc shortcut on windows, among other things.
  686. if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
  687. shifted = 0;
  688. }
  689. #endif
  690. #ifdef GRAVE_ESC_GUI_OVERRIDE
  691. // if GUI is pressed, ESC is always sent
  692. if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
  693. shifted = 0;
  694. }
  695. #endif
  696. #ifdef GRAVE_ESC_SHIFT_OVERRIDE
  697. // if SHIFT is pressed, ESC is always sent
  698. if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
  699. shifted = 0;
  700. }
  701. #endif
  702. if (record->event.pressed) {
  703. grave_esc_was_shifted = shifted;
  704. add_key(shifted ? KC_GRAVE : KC_ESCAPE);
  705. }
  706. else {
  707. del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
  708. }
  709. send_keyboard_report();
  710. return false;
  711. }
  712. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
  713. case BL_BRTG: {
  714. if (record->event.pressed)
  715. breathing_toggle();
  716. return false;
  717. }
  718. #endif
  719. default: {
  720. shift_interrupted[0] = true;
  721. shift_interrupted[1] = true;
  722. break;
  723. }
  724. }
  725. return process_action_kb(record);
  726. }
  727. __attribute__ ((weak))
  728. const bool ascii_to_shift_lut[0x80] PROGMEM = {
  729. 0, 0, 0, 0, 0, 0, 0, 0,
  730. 0, 0, 0, 0, 0, 0, 0, 0,
  731. 0, 0, 0, 0, 0, 0, 0, 0,
  732. 0, 0, 0, 0, 0, 0, 0, 0,
  733. 0, 1, 1, 1, 1, 1, 1, 0,
  734. 1, 1, 1, 1, 0, 0, 0, 0,
  735. 0, 0, 0, 0, 0, 0, 0, 0,
  736. 0, 0, 1, 0, 1, 0, 1, 1,
  737. 1, 1, 1, 1, 1, 1, 1, 1,
  738. 1, 1, 1, 1, 1, 1, 1, 1,
  739. 1, 1, 1, 1, 1, 1, 1, 1,
  740. 1, 1, 1, 0, 0, 0, 1, 1,
  741. 0, 0, 0, 0, 0, 0, 0, 0,
  742. 0, 0, 0, 0, 0, 0, 0, 0,
  743. 0, 0, 0, 0, 0, 0, 0, 0,
  744. 0, 0, 0, 1, 1, 1, 1, 0
  745. };
  746. __attribute__ ((weak))
  747. const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
  748. 0, 0, 0, 0, 0, 0, 0, 0,
  749. KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
  750. 0, 0, 0, 0, 0, 0, 0, 0,
  751. 0, 0, 0, KC_ESC, 0, 0, 0, 0,
  752. KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
  753. KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
  754. KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
  755. KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
  756. KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  757. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  758. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  759. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
  760. KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
  761. KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
  762. KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
  763. KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
  764. };
  765. void send_string(const char *str) {
  766. send_string_with_delay(str, 0);
  767. }
  768. void send_string_P(const char *str) {
  769. send_string_with_delay_P(str, 0);
  770. }
  771. void send_string_with_delay(const char *str, uint8_t interval) {
  772. while (1) {
  773. char ascii_code = *str;
  774. if (!ascii_code) break;
  775. if (ascii_code == 1) {
  776. // tap
  777. uint8_t keycode = *(++str);
  778. register_code(keycode);
  779. unregister_code(keycode);
  780. } else if (ascii_code == 2) {
  781. // down
  782. uint8_t keycode = *(++str);
  783. register_code(keycode);
  784. } else if (ascii_code == 3) {
  785. // up
  786. uint8_t keycode = *(++str);
  787. unregister_code(keycode);
  788. } else {
  789. send_char(ascii_code);
  790. }
  791. ++str;
  792. // interval
  793. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  794. }
  795. }
  796. void send_string_with_delay_P(const char *str, uint8_t interval) {
  797. while (1) {
  798. char ascii_code = pgm_read_byte(str);
  799. if (!ascii_code) break;
  800. if (ascii_code == 1) {
  801. // tap
  802. uint8_t keycode = pgm_read_byte(++str);
  803. register_code(keycode);
  804. unregister_code(keycode);
  805. } else if (ascii_code == 2) {
  806. // down
  807. uint8_t keycode = pgm_read_byte(++str);
  808. register_code(keycode);
  809. } else if (ascii_code == 3) {
  810. // up
  811. uint8_t keycode = pgm_read_byte(++str);
  812. unregister_code(keycode);
  813. } else {
  814. send_char(ascii_code);
  815. }
  816. ++str;
  817. // interval
  818. { uint8_t ms = interval; while (ms--) wait_ms(1); }
  819. }
  820. }
  821. void send_char(char ascii_code) {
  822. uint8_t keycode;
  823. keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
  824. if (pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code])) {
  825. register_code(KC_LSFT);
  826. register_code(keycode);
  827. unregister_code(keycode);
  828. unregister_code(KC_LSFT);
  829. } else {
  830. register_code(keycode);
  831. unregister_code(keycode);
  832. }
  833. }
  834. void set_single_persistent_default_layer(uint8_t default_layer) {
  835. #if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
  836. PLAY_SONG(default_layer_songs[default_layer]);
  837. #endif
  838. eeconfig_update_default_layer(1U<<default_layer);
  839. default_layer_set(1U<<default_layer);
  840. }
  841. uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  842. uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
  843. uint32_t mask3 = 1UL << layer3;
  844. return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
  845. }
  846. void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
  847. layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
  848. }
  849. void tap_random_base64(void) {
  850. #if defined(__AVR_ATmega32U4__)
  851. uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
  852. #else
  853. uint8_t key = rand() % 64;
  854. #endif
  855. switch (key) {
  856. case 0 ... 25:
  857. register_code(KC_LSFT);
  858. register_code(key + KC_A);
  859. unregister_code(key + KC_A);
  860. unregister_code(KC_LSFT);
  861. break;
  862. case 26 ... 51:
  863. register_code(key - 26 + KC_A);
  864. unregister_code(key - 26 + KC_A);
  865. break;
  866. case 52:
  867. register_code(KC_0);
  868. unregister_code(KC_0);
  869. break;
  870. case 53 ... 61:
  871. register_code(key - 53 + KC_1);
  872. unregister_code(key - 53 + KC_1);
  873. break;
  874. case 62:
  875. register_code(KC_LSFT);
  876. register_code(KC_EQL);
  877. unregister_code(KC_EQL);
  878. unregister_code(KC_LSFT);
  879. break;
  880. case 63:
  881. register_code(KC_SLSH);
  882. unregister_code(KC_SLSH);
  883. break;
  884. }
  885. }
  886. void matrix_init_quantum() {
  887. if (!eeconfig_is_enabled() && !eeconfig_is_disabled()) {
  888. eeconfig_init();
  889. }
  890. #ifdef BACKLIGHT_ENABLE
  891. backlight_init_ports();
  892. #endif
  893. #ifdef AUDIO_ENABLE
  894. audio_init();
  895. #endif
  896. #ifdef RGB_MATRIX_ENABLE
  897. rgb_matrix_init();
  898. #endif
  899. matrix_init_kb();
  900. }
  901. uint8_t rgb_matrix_task_counter = 0;
  902. #ifndef RGB_MATRIX_SKIP_FRAMES
  903. #define RGB_MATRIX_SKIP_FRAMES 1
  904. #endif
  905. void matrix_scan_quantum() {
  906. #if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
  907. matrix_scan_music();
  908. #endif
  909. #ifdef TAP_DANCE_ENABLE
  910. matrix_scan_tap_dance();
  911. #endif
  912. #ifdef COMBO_ENABLE
  913. matrix_scan_combo();
  914. #endif
  915. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  916. backlight_task();
  917. #endif
  918. #ifdef RGB_MATRIX_ENABLE
  919. rgb_matrix_task();
  920. if (rgb_matrix_task_counter == 0) {
  921. rgb_matrix_update_pwm_buffers();
  922. }
  923. rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
  924. #endif
  925. matrix_scan_kb();
  926. }
  927. #if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)
  928. static const uint8_t backlight_pin = BACKLIGHT_PIN;
  929. // depending on the pin, we use a different output compare unit
  930. #if BACKLIGHT_PIN == B7
  931. # define TCCRxA TCCR1A
  932. # define TCCRxB TCCR1B
  933. # define COMxx1 COM1C1
  934. # define OCRxx OCR1C
  935. # define ICRx ICR1
  936. #elif BACKLIGHT_PIN == B6
  937. # define TCCRxA TCCR1A
  938. # define TCCRxB TCCR1B
  939. # define COMxx1 COM1B1
  940. # define OCRxx OCR1B
  941. # define ICRx ICR1
  942. #elif BACKLIGHT_PIN == B5
  943. # define TCCRxA TCCR1A
  944. # define TCCRxB TCCR1B
  945. # define COMxx1 COM1A1
  946. # define OCRxx OCR1A
  947. # define ICRx ICR1
  948. #elif BACKLIGHT_PIN == C6
  949. # define TCCRxA TCCR3A
  950. # define TCCRxB TCCR3B
  951. # define COMxx1 COM1A1
  952. # define OCRxx OCR3A
  953. # define ICRx ICR3
  954. #else
  955. # define NO_HARDWARE_PWM
  956. #endif
  957. #ifndef BACKLIGHT_ON_STATE
  958. #define BACKLIGHT_ON_STATE 0
  959. #endif
  960. #ifdef NO_HARDWARE_PWM // pwm through software
  961. __attribute__ ((weak))
  962. void backlight_init_ports(void)
  963. {
  964. // Setup backlight pin as output and output to on state.
  965. // DDRx |= n
  966. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  967. #if BACKLIGHT_ON_STATE == 0
  968. // PORTx &= ~n
  969. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  970. #else
  971. // PORTx |= n
  972. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  973. #endif
  974. }
  975. __attribute__ ((weak))
  976. void backlight_set(uint8_t level) {}
  977. uint8_t backlight_tick = 0;
  978. #ifndef BACKLIGHT_CUSTOM_DRIVER
  979. void backlight_task(void) {
  980. if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
  981. #if BACKLIGHT_ON_STATE == 0
  982. // PORTx &= ~n
  983. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  984. #else
  985. // PORTx |= n
  986. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  987. #endif
  988. } else {
  989. #if BACKLIGHT_ON_STATE == 0
  990. // PORTx |= n
  991. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  992. #else
  993. // PORTx &= ~n
  994. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  995. #endif
  996. }
  997. backlight_tick = (backlight_tick + 1) % 16;
  998. }
  999. #endif
  1000. #ifdef BACKLIGHT_BREATHING
  1001. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1002. #error "Backlight breathing only available with hardware PWM. Please disable."
  1003. #endif
  1004. #endif
  1005. #else // pwm through timer
  1006. #define TIMER_TOP 0xFFFFU
  1007. // See http://jared.geek.nz/2013/feb/linear-led-pwm
  1008. static uint16_t cie_lightness(uint16_t v) {
  1009. if (v <= 5243) // if below 8% of max
  1010. return v / 9; // same as dividing by 900%
  1011. else {
  1012. uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
  1013. // to get a useful result with integer division, we shift left in the expression above
  1014. // and revert what we've done again after squaring.
  1015. y = y * y * y >> 8;
  1016. if (y > 0xFFFFUL) // prevent overflow
  1017. return 0xFFFFU;
  1018. else
  1019. return (uint16_t) y;
  1020. }
  1021. }
  1022. // range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
  1023. static inline void set_pwm(uint16_t val) {
  1024. OCRxx = val;
  1025. }
  1026. #ifndef BACKLIGHT_CUSTOM_DRIVER
  1027. __attribute__ ((weak))
  1028. void backlight_set(uint8_t level) {
  1029. if (level > BACKLIGHT_LEVELS)
  1030. level = BACKLIGHT_LEVELS;
  1031. if (level == 0) {
  1032. // Turn off PWM control on backlight pin
  1033. TCCRxA &= ~(_BV(COMxx1));
  1034. } else {
  1035. // Turn on PWM control of backlight pin
  1036. TCCRxA |= _BV(COMxx1);
  1037. }
  1038. // Set the brightness
  1039. set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
  1040. }
  1041. void backlight_task(void) {}
  1042. #endif // BACKLIGHT_CUSTOM_DRIVER
  1043. #ifdef BACKLIGHT_BREATHING
  1044. #define BREATHING_NO_HALT 0
  1045. #define BREATHING_HALT_OFF 1
  1046. #define BREATHING_HALT_ON 2
  1047. #define BREATHING_STEPS 128
  1048. static uint8_t breathing_period = BREATHING_PERIOD;
  1049. static uint8_t breathing_halt = BREATHING_NO_HALT;
  1050. static uint16_t breathing_counter = 0;
  1051. bool is_breathing(void) {
  1052. return !!(TIMSK1 & _BV(TOIE1));
  1053. }
  1054. #define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
  1055. #define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
  1056. #define breathing_min() do {breathing_counter = 0;} while (0)
  1057. #define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
  1058. void breathing_enable(void)
  1059. {
  1060. breathing_counter = 0;
  1061. breathing_halt = BREATHING_NO_HALT;
  1062. breathing_interrupt_enable();
  1063. }
  1064. void breathing_pulse(void)
  1065. {
  1066. if (get_backlight_level() == 0)
  1067. breathing_min();
  1068. else
  1069. breathing_max();
  1070. breathing_halt = BREATHING_HALT_ON;
  1071. breathing_interrupt_enable();
  1072. }
  1073. void breathing_disable(void)
  1074. {
  1075. breathing_interrupt_disable();
  1076. // Restore backlight level
  1077. backlight_set(get_backlight_level());
  1078. }
  1079. void breathing_self_disable(void)
  1080. {
  1081. if (get_backlight_level() == 0)
  1082. breathing_halt = BREATHING_HALT_OFF;
  1083. else
  1084. breathing_halt = BREATHING_HALT_ON;
  1085. }
  1086. void breathing_toggle(void) {
  1087. if (is_breathing())
  1088. breathing_disable();
  1089. else
  1090. breathing_enable();
  1091. }
  1092. void breathing_period_set(uint8_t value)
  1093. {
  1094. if (!value)
  1095. value = 1;
  1096. breathing_period = value;
  1097. }
  1098. void breathing_period_default(void) {
  1099. breathing_period_set(BREATHING_PERIOD);
  1100. }
  1101. void breathing_period_inc(void)
  1102. {
  1103. breathing_period_set(breathing_period+1);
  1104. }
  1105. void breathing_period_dec(void)
  1106. {
  1107. breathing_period_set(breathing_period-1);
  1108. }
  1109. /* To generate breathing curve in python:
  1110. * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
  1111. */
  1112. static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  1113. // Use this before the cie_lightness function.
  1114. static inline uint16_t scale_backlight(uint16_t v) {
  1115. return v / BACKLIGHT_LEVELS * get_backlight_level();
  1116. }
  1117. /* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
  1118. * about 244 times per second.
  1119. */
  1120. ISR(TIMER1_OVF_vect)
  1121. {
  1122. uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
  1123. // resetting after one period to prevent ugly reset at overflow.
  1124. breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
  1125. uint8_t index = breathing_counter / interval % BREATHING_STEPS;
  1126. if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
  1127. ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  1128. {
  1129. breathing_interrupt_disable();
  1130. }
  1131. set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
  1132. }
  1133. #endif // BACKLIGHT_BREATHING
  1134. __attribute__ ((weak))
  1135. void backlight_init_ports(void)
  1136. {
  1137. // Setup backlight pin as output and output to on state.
  1138. // DDRx |= n
  1139. _SFR_IO8((backlight_pin >> 4) + 1) |= _BV(backlight_pin & 0xF);
  1140. #if BACKLIGHT_ON_STATE == 0
  1141. // PORTx &= ~n
  1142. _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
  1143. #else
  1144. // PORTx |= n
  1145. _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
  1146. #endif
  1147. // I could write a wall of text here to explain... but TL;DW
  1148. // Go read the ATmega32u4 datasheet.
  1149. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
  1150. // Pin PB7 = OCR1C (Timer 1, Channel C)
  1151. // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
  1152. // (i.e. start high, go low when counter matches.)
  1153. // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
  1154. // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
  1155. /*
  1156. 14.8.3:
  1157. "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
  1158. "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
  1159. */
  1160. TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
  1161. TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
  1162. // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
  1163. ICRx = TIMER_TOP;
  1164. backlight_init();
  1165. #ifdef BACKLIGHT_BREATHING
  1166. breathing_enable();
  1167. #endif
  1168. }
  1169. #endif // NO_HARDWARE_PWM
  1170. #else // backlight
  1171. __attribute__ ((weak))
  1172. void backlight_init_ports(void) {}
  1173. __attribute__ ((weak))
  1174. void backlight_set(uint8_t level) {}
  1175. #endif // backlight
  1176. #ifdef HD44780_ENABLED
  1177. #include "hd44780.h"
  1178. #endif
  1179. // Functions for spitting out values
  1180. //
  1181. void send_dword(uint32_t number) { // this might not actually work
  1182. uint16_t word = (number >> 16);
  1183. send_word(word);
  1184. send_word(number & 0xFFFFUL);
  1185. }
  1186. void send_word(uint16_t number) {
  1187. uint8_t byte = number >> 8;
  1188. send_byte(byte);
  1189. send_byte(number & 0xFF);
  1190. }
  1191. void send_byte(uint8_t number) {
  1192. uint8_t nibble = number >> 4;
  1193. send_nibble(nibble);
  1194. send_nibble(number & 0xF);
  1195. }
  1196. void send_nibble(uint8_t number) {
  1197. switch (number) {
  1198. case 0:
  1199. register_code(KC_0);
  1200. unregister_code(KC_0);
  1201. break;
  1202. case 1 ... 9:
  1203. register_code(KC_1 + (number - 1));
  1204. unregister_code(KC_1 + (number - 1));
  1205. break;
  1206. case 0xA ... 0xF:
  1207. register_code(KC_A + (number - 0xA));
  1208. unregister_code(KC_A + (number - 0xA));
  1209. break;
  1210. }
  1211. }
  1212. __attribute__((weak))
  1213. uint16_t hex_to_keycode(uint8_t hex)
  1214. {
  1215. hex = hex & 0xF;
  1216. if (hex == 0x0) {
  1217. return KC_0;
  1218. } else if (hex < 0xA) {
  1219. return KC_1 + (hex - 0x1);
  1220. } else {
  1221. return KC_A + (hex - 0xA);
  1222. }
  1223. }
  1224. void api_send_unicode(uint32_t unicode) {
  1225. #ifdef API_ENABLE
  1226. uint8_t chunk[4];
  1227. dword_to_bytes(unicode, chunk);
  1228. MT_SEND_DATA(DT_UNICODE, chunk, 5);
  1229. #endif
  1230. }
  1231. __attribute__ ((weak))
  1232. void led_set_user(uint8_t usb_led) {
  1233. }
  1234. __attribute__ ((weak))
  1235. void led_set_kb(uint8_t usb_led) {
  1236. led_set_user(usb_led);
  1237. }
  1238. __attribute__ ((weak))
  1239. void led_init_ports(void)
  1240. {
  1241. }
  1242. __attribute__ ((weak))
  1243. void led_set(uint8_t usb_led)
  1244. {
  1245. // Example LED Code
  1246. //
  1247. // // Using PE6 Caps Lock LED
  1248. // if (usb_led & (1<<USB_LED_CAPS_LOCK))
  1249. // {
  1250. // // Output high.
  1251. // DDRE |= (1<<6);
  1252. // PORTE |= (1<<6);
  1253. // }
  1254. // else
  1255. // {
  1256. // // Output low.
  1257. // DDRE &= ~(1<<6);
  1258. // PORTE &= ~(1<<6);
  1259. // }
  1260. led_set_kb(usb_led);
  1261. }
  1262. //------------------------------------------------------------------------------
  1263. // Override these functions in your keymap file to play different tunes on
  1264. // different events such as startup and bootloader jump
  1265. __attribute__ ((weak))
  1266. void startup_user() {}
  1267. __attribute__ ((weak))
  1268. void shutdown_user() {}
  1269. //------------------------------------------------------------------------------