123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- /*
- * Copyright 2020 Richard Sutherland (rich@brickbots.com)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include "wpm.h"
- #include "timer.h"
- #include "keycode.h"
- #include "quantum_keycodes.h"
- #include "action_util.h"
- #include <math.h>
- // WPM Stuff
- static uint8_t current_wpm = 0;
- static uint32_t wpm_timer = 0;
- /* The WPM calculation works by specifying a certain number of 'periods' inside
- * a ring buffer, and we count the number of keypresses which occur in each of
- * those periods. Then to calculate WPM, we add up all of the keypresses in
- * the whole ring buffer, divide by the number of keypresses in a 'word', and
- * then adjust for how much time is captured by our ring buffer. The size
- * of the ring buffer can be configured using the keymap configuration
- * value `WPM_SAMPLE_PERIODS`.
- *
- */
- #define MAX_PERIODS (WPM_SAMPLE_PERIODS)
- #define PERIOD_DURATION (1000 * WPM_SAMPLE_SECONDS / MAX_PERIODS)
- static int16_t period_presses[MAX_PERIODS] = {0};
- static uint8_t current_period = 0;
- static uint8_t periods = 1;
- #if !defined(WPM_UNFILTERED)
- /* LATENCY is used as part of filtering, and controls how quickly the reported
- * WPM trails behind our actual instantaneous measured WPM value, and is
- * defined in milliseconds. So for LATENCY == 100, the displayed WPM is
- * smoothed out over periods of 0.1 seconds. This results in a nice,
- * smoothly-moving reported WPM value which nevertheless is never more than
- * 0.1 seconds behind the typist's actual current WPM.
- *
- * LATENCY is not used if WPM_UNFILTERED is defined.
- */
- # define LATENCY (100)
- static uint32_t smoothing_timer = 0;
- static uint8_t prev_wpm = 0;
- static uint8_t next_wpm = 0;
- #endif
- void set_current_wpm(uint8_t new_wpm) {
- current_wpm = new_wpm;
- }
- uint8_t get_current_wpm(void) {
- return current_wpm;
- }
- bool wpm_keycode(uint16_t keycode) {
- return wpm_keycode_kb(keycode);
- }
- __attribute__((weak)) bool wpm_keycode_kb(uint16_t keycode) {
- return wpm_keycode_user(keycode);
- }
- __attribute__((weak)) bool wpm_keycode_user(uint16_t keycode) {
- if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
- keycode = keycode & 0xFF;
- } else if (keycode > 0xFF) {
- keycode = 0;
- }
- if ((keycode >= KC_A && keycode <= KC_0) || (keycode >= KC_TAB && keycode <= KC_SLASH)) {
- return true;
- }
- return false;
- }
- #if defined(WPM_ALLOW_COUNT_REGRESSION)
- __attribute__((weak)) uint8_t wpm_regress_count(uint16_t keycode) {
- bool weak_modded = (keycode >= QK_LCTL && keycode < QK_LSFT) || (keycode >= QK_RCTL && keycode < QK_RSFT);
- if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX) || (keycode >= QK_MODS && keycode <= QK_MODS_MAX)) {
- keycode = keycode & 0xFF;
- } else if (keycode > 0xFF) {
- keycode = 0;
- }
- if (keycode == KC_DELETE || keycode == KC_BACKSPACE) {
- if (((get_mods() | get_oneshot_mods()) & MOD_MASK_CTRL) || weak_modded) {
- return WPM_ESTIMATED_WORD_SIZE;
- } else {
- return 1;
- }
- } else {
- return 0;
- }
- }
- #endif
- // Outside 'raw' mode we smooth results over time.
- void update_wpm(uint16_t keycode) {
- if (wpm_keycode(keycode) && period_presses[current_period] < INT16_MAX) {
- period_presses[current_period]++;
- }
- #if defined(WPM_ALLOW_COUNT_REGRESSION)
- uint8_t regress = wpm_regress_count(keycode);
- if (regress && period_presses[current_period] > INT16_MIN) {
- period_presses[current_period]--;
- }
- #endif
- }
- void decay_wpm(void) {
- int32_t presses = period_presses[0];
- for (int i = 1; i <= periods; i++) {
- presses += period_presses[i];
- }
- if (presses < 0) {
- presses = 0;
- }
- int32_t elapsed = timer_elapsed32(wpm_timer);
- uint32_t duration = (((periods)*PERIOD_DURATION) + elapsed);
- int32_t wpm_now = (60000 * presses) / (duration * WPM_ESTIMATED_WORD_SIZE);
- if (wpm_now < 0) // set some reasonable WPM measurement limits
- wpm_now = 0;
- if (wpm_now > 240) wpm_now = 240;
- if (elapsed > PERIOD_DURATION) {
- current_period = (current_period + 1) % MAX_PERIODS;
- period_presses[current_period] = 0;
- periods = (periods < MAX_PERIODS - 1) ? periods + 1 : MAX_PERIODS - 1;
- elapsed = 0;
- wpm_timer = timer_read32();
- }
- if (presses < 2) // don't guess high WPM based on a single keypress.
- wpm_now = 0;
- #if defined(WPM_LAUNCH_CONTROL)
- /*
- * If the `WPM_LAUNCH_CONTROL` option is enabled, then whenever our WPM
- * drops to absolute zero due to no typing occurring within our sample
- * ring buffer, we reset and start measuring fresh, which lets our WPM
- * immediately reach the correct value even before a full sampling buffer
- * has been filled.
- */
- if (presses == 0) {
- current_period = 0;
- periods = 0;
- wpm_now = 0;
- period_presses[0] = 0;
- }
- #endif // WPM_LAUNCH_CONTROL
- #if defined(WPM_UNFILTERED)
- current_wpm = wpm_now;
- #else
- int32_t latency = timer_elapsed32(smoothing_timer);
- if (latency > LATENCY) {
- smoothing_timer = timer_read32();
- prev_wpm = current_wpm;
- next_wpm = wpm_now;
- }
- current_wpm = prev_wpm + (latency * ((int)next_wpm - (int)prev_wpm) / LATENCY);
- #endif
- }
|